Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2003_15_10_a0, author = {O. Yu. Milyukova and I. V. Popov}, title = {Parallel iterative methods with factorized preconditioning matrices for elliptic equations on unstructed triangular grid}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--16}, publisher = {mathdoc}, volume = {15}, number = {10}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2003_15_10_a0/} }
TY - JOUR AU - O. Yu. Milyukova AU - I. V. Popov TI - Parallel iterative methods with factorized preconditioning matrices for elliptic equations on unstructed triangular grid JO - Matematičeskoe modelirovanie PY - 2003 SP - 3 EP - 16 VL - 15 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2003_15_10_a0/ LA - ru ID - MM_2003_15_10_a0 ER -
%0 Journal Article %A O. Yu. Milyukova %A I. V. Popov %T Parallel iterative methods with factorized preconditioning matrices for elliptic equations on unstructed triangular grid %J Matematičeskoe modelirovanie %D 2003 %P 3-16 %V 15 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2003_15_10_a0/ %G ru %F MM_2003_15_10_a0
O. Yu. Milyukova; I. V. Popov. Parallel iterative methods with factorized preconditioning matrices for elliptic equations on unstructed triangular grid. Matematičeskoe modelirovanie, Tome 15 (2003) no. 10, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2003_15_10_a0/
[1] Popov I. V., Polyakov S. V., “Postroenie adaptivnykh neregulyarnykh treugolnykh setok dlya dvumernykh mnogosvyaznykh nevypuklykh oblastei”, Matem. modelirovanie, 14:6 (2002), 25–35 | MR | Zbl
[2] Meijerink J. A., van der Vorst H. A., “An Iterative Solution Method for Linear Systems, of which the Coefficient Matrix is a Symmetric $M$-matrix”, Math. Comp., 31:137 (1977), 148–162 | DOI | MR | Zbl
[3] Gustafsson I. A, “Class of First Order Factorization Methods”, BIT, 18 (1978), 142–156 | DOI | MR | Zbl
[4] Axelsson O., “A Generalized SSOR Method”, BIT, 13 (1972), 443–467 | DOI | MR
[5] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR
[6] Duff I. S., Meurant G. A., “The Effect of Ordering on Preconditioned Conjugate Gradients”, BIT, 29 (1989), 635–657 | DOI | MR | Zbl
[7] Eijkhout V., “Analysis of Parallel Incomplete point Factorizations”, Lin. Alg. Appl., 154–156 (1991), 723–740 | DOI | MR | Zbl
[8] Dot S., “On parallelism and convergence of incomplete LU factorization”, Appl. Numer. Math., 7:5 (1991), 417–436 | DOI | MR
[9] Milyukova O. Yu., “Parallel approximate factorization method for solving discreate elliptic equations”, Parallel Computing, 27 (2001), 1365–1379 | DOI | MR | Zbl
[10] Milyukova O. Yu., “Parallelnye varianty nekotorykh iteratsionnykh metodov s faktorizovannoi matritsei predobuslovlivaniya”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1619–1636 | MR | Zbl
[11] Dzhordzh A., Lyu Dzh., Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984 | MR
[12] Milyukova O. Yu., “Parallelnyi variant obobschennogo poperemenno-treugolnogo metoda dlya resheniya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 2002–2012 | MR | Zbl
[13] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[14] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR | Zbl
[15] Pascal J. F., Paul-Louis G., Mesh Generation application to finite elements, Hermes Science Publishing, Oxford, 2000 | MR