Parallel iterative methods with factorized preconditioning matrices for elliptic equations on unstructed triangular grid
Matematičeskoe modelirovanie, Tome 15 (2003) no. 10, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Parallel versions of two iterative methods are proposed for solving discretized elliptic equations on unstructed triangular grid on distributed-memory parallel computers. The conjugate gradient methods with incomplete factorization type preconditioning and modified incomplete factorization type preconditioning are considered. The construction of the parallel versions of the methods is based on the special orderings of nodes of a grid. The rate of convergence and efficientcy of proposed methods are investigated both teoretically and by means of calculations of model problem.
@article{MM_2003_15_10_a0,
     author = {O. Yu. Milyukova and I. V. Popov},
     title = {Parallel iterative methods with factorized preconditioning matrices for elliptic equations on unstructed triangular grid},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {15},
     number = {10},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_10_a0/}
}
TY  - JOUR
AU  - O. Yu. Milyukova
AU  - I. V. Popov
TI  - Parallel iterative methods with factorized preconditioning matrices for elliptic equations on unstructed triangular grid
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 3
EP  - 16
VL  - 15
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_10_a0/
LA  - ru
ID  - MM_2003_15_10_a0
ER  - 
%0 Journal Article
%A O. Yu. Milyukova
%A I. V. Popov
%T Parallel iterative methods with factorized preconditioning matrices for elliptic equations on unstructed triangular grid
%J Matematičeskoe modelirovanie
%D 2003
%P 3-16
%V 15
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_10_a0/
%G ru
%F MM_2003_15_10_a0
O. Yu. Milyukova; I. V. Popov. Parallel iterative methods with factorized preconditioning matrices for elliptic equations on unstructed triangular grid. Matematičeskoe modelirovanie, Tome 15 (2003) no. 10, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2003_15_10_a0/

[1] Popov I. V., Polyakov S. V., “Postroenie adaptivnykh neregulyarnykh treugolnykh setok dlya dvumernykh mnogosvyaznykh nevypuklykh oblastei”, Matem. modelirovanie, 14:6 (2002), 25–35 | MR | Zbl

[2] Meijerink J. A., van der Vorst H. A., “An Iterative Solution Method for Linear Systems, of which the Coefficient Matrix is a Symmetric $M$-matrix”, Math. Comp., 31:137 (1977), 148–162 | DOI | MR | Zbl

[3] Gustafsson I. A, “Class of First Order Factorization Methods”, BIT, 18 (1978), 142–156 | DOI | MR | Zbl

[4] Axelsson O., “A Generalized SSOR Method”, BIT, 13 (1972), 443–467 | DOI | MR

[5] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR

[6] Duff I. S., Meurant G. A., “The Effect of Ordering on Preconditioned Conjugate Gradients”, BIT, 29 (1989), 635–657 | DOI | MR | Zbl

[7] Eijkhout V., “Analysis of Parallel Incomplete point Factorizations”, Lin. Alg. Appl., 154–156 (1991), 723–740 | DOI | MR | Zbl

[8] Dot S., “On parallelism and convergence of incomplete LU factorization”, Appl. Numer. Math., 7:5 (1991), 417–436 | DOI | MR

[9] Milyukova O. Yu., “Parallel approximate factorization method for solving discreate elliptic equations”, Parallel Computing, 27 (2001), 1365–1379 | DOI | MR | Zbl

[10] Milyukova O. Yu., “Parallelnye varianty nekotorykh iteratsionnykh metodov s faktorizovannoi matritsei predobuslovlivaniya”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1619–1636 | MR | Zbl

[11] Dzhordzh A., Lyu Dzh., Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984 | MR

[12] Milyukova O. Yu., “Parallelnyi variant obobschennogo poperemenno-treugolnogo metoda dlya resheniya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 2002–2012 | MR | Zbl

[13] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[14] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[15] Pascal J. F., Paul-Louis G., Mesh Generation application to finite elements, Hermes Science Publishing, Oxford, 2000 | MR