Finite-element patterns for calculation of laminated shells of revolution of nonzero gaussian curvature
Matematičeskoe modelirovanie, Tome 14 (2002) no. 8, pp. 37-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

Finite-element patterns have been created for calculation of stress-strain state of laminated shells of nonzero gaussian curvature. The hypotheses of Kirhgoff–Liev are applied to carrying layers, and layers of filer are considered as a thick-walled shells with use expression of three-dimensional theory of elasticity. The function approximating movements of devices explicitly included an analytically received expressions describing movements of a shell as a rigid body.
@article{MM_2002_14_8_a7,
     author = {V. N. Bakulin},
     title = {Finite-element patterns for calculation of laminated shells of revolution of nonzero gaussian curvature},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {37--43},
     publisher = {mathdoc},
     volume = {14},
     number = {8},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_8_a7/}
}
TY  - JOUR
AU  - V. N. Bakulin
TI  - Finite-element patterns for calculation of laminated shells of revolution of nonzero gaussian curvature
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 37
EP  - 43
VL  - 14
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_8_a7/
LA  - ru
ID  - MM_2002_14_8_a7
ER  - 
%0 Journal Article
%A V. N. Bakulin
%T Finite-element patterns for calculation of laminated shells of revolution of nonzero gaussian curvature
%J Matematičeskoe modelirovanie
%D 2002
%P 37-43
%V 14
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_8_a7/
%G ru
%F MM_2002_14_8_a7
V. N. Bakulin. Finite-element patterns for calculation of laminated shells of revolution of nonzero gaussian curvature. Matematičeskoe modelirovanie, Tome 14 (2002) no. 8, pp. 37-43. http://geodesic.mathdoc.fr/item/MM_2002_14_8_a7/

[1] Bakulin V. N., Rassokha A. L., Metod konechnykh elementov i golograficheskaya interferometriya v mekhanike kompozitov, Mashinostroenie, M., 1987

[2] Piskunov V. G. i dr., Raschet neodnorodnykh pologikh obolochek i plastin metodom konechnykh elementov, Vischa shkola, Kiev, 1987

[3] Rikards R. B., Metod konechnykh elementov v teorii obolochek i plastin, Zinatne, Riga, 1988 | MR | Zbl

[4] Bykov E. V., Popov B. G., “Raschet mnogosloinykh obolochechnykh konstruktsii s uchetom deformatsii poperechnykh sdvigov”, Raschety na prochnost, Sb. nauchn. st., ed. V. I. Myachenkov, Mashinostroenie, M., 1989, 66–87 | MR

[5] Bakulin V. N., Metod konechnykh elementov dlya issledovaniya napryazhenno-deformirovannogo sostoyaniya trekhsloinykh tsilindricheskikh obolochek, TsNII informatsii, M., 1985

[6] Bakulin V. N., Demidov V. I., “Trekhsloinyi konechnyi element estestvennoi krivizny”, Izvestiya VUZov, Mashinostroenie, 1978, no. 5, 5–10

[7] Bakulin V. N., “Approksimatsiya polei peremeschenii pri raschete trekhsloinykh i odnosloinykh obolochek metodom konechnykh elementov”, V sb. nauchnykh trudov MAI “Chislennye i eksperimentalnye metody issledovaniya prochnosti, ustoichivosti i kolebanii konstruktsii L. A.”, MAI, M., 1983, 7–13

[8] Bakulin V. N., “Neklassicheskie modeli mekhaniki sloistykh obolochechnykh konstruktsii iz kompozitsionnykh materialov”, Vosmoi vserossiiskii s'ezd po teoreticheskoi i prikladnoi mekhanike. Ekaterinburg, UrO RAN, 2001, 69–70

[9] Bakulin V. N., Postroenie utochnennykh modelei v mekhanike obolochechnykh konstruktsii iz kompozitnykh materialov, Yubileinaya shkola – seminar “Kompozitnye materialy” k 80-letiyu akad. I. F. Obraztsova, IPRIM RAN, M., 2000

[10] Bakulin V. N., Repinskii V. V., “Konechno-elementnye modeli deformatsii odnosloinykh i trekhsloinykh konicheskikh obolochek”, Matem. modelirovanie, 13:6 (2001), 39–46, M. | Zbl

[11] Repinskii V. V., “Effektivnye konechnye elementy dlya rascheta ustoichivosti tonkikh anizotropnykh obolochek vrascheniya”, Vopr. oboron. tekhniki. Ser. 15, 1997, no. 11(117)

[12] Zheleznoe L. P., Kabanov V. V., “Funktsii peremeschenii konechnykh elementov obolochki vrascheniya kak tverdykh tel”, Mekhanika tverdogo tela, 1990, no. 1, 131–136

[13] Bakulin V. N., Repinskii V. V., “Effektivnye konechno-elementnye modeli trekhsloinykh obolochek vrascheniya v zadachakh statiki i ustoichivosti”, International Conference. Modeling and investigation of systems stability. Mechanical Systems, Kiev, 1997

[14] Bakulin V. N., Repinskii V. V., “Utochnennye konechno-elementnye modeli dlya rascheta sloistykh toroidalnykh obolochek”, Mezhdunarodnaya konferentsiya “Dynamic System Modeling and Stability Investigation (DSMSI-2001)”, Kievskii universitet, Kiev, 2001

[15] Bakulin V. N., Repinskii V. V., “Raschet ustoichivosti sloistykh toroidalnykh obolochek vrascheniya”, Sistemnyi analiz i upravlenie kosmicheskimi kompleksami, Sbornik trudov mezhdunarodnoi konferentsii, MAI, M., 2001

[16] Repinskii V. V., Bakulin V. N., “Ustoichivost toroidalnykh sloistykh obolochek vrascheniya, oslablennykh vyrezami”, Odinnadtsataya mezhdunarodnaya konferentsiya po vychislitelnoi mekhanike i sovremennym prikladnym programmnym sredstvam, M., Istra, 289–290

[17] Novozhilov B. V., Teoriya tonkikh obolochek, Sudpromgiz, L., 1951

[18] Vasilev V. V., Mekhanika konstruktsii iz kompozitsionnykh materialov, Mashinostroenie, M., 1988