Construction of an allowable stress field for a counter functional in the theory of elasticity
Matematičeskoe modelirovanie, Tome 14 (2002) no. 8, pp. 124-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for construction of an allowable stress field is given for a counter functional aimed to error estimation of an approximate solution of a linear elastic problem. A quadrangular finite element in stresses is proposed which simplifies account of static boundary conditions.
@article{MM_2002_14_8_a22,
     author = {E. E. Krasnovskii},
     title = {Construction of an allowable stress field for a counter functional in the theory of elasticity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {124--127},
     publisher = {mathdoc},
     volume = {14},
     number = {8},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_8_a22/}
}
TY  - JOUR
AU  - E. E. Krasnovskii
TI  - Construction of an allowable stress field for a counter functional in the theory of elasticity
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 124
EP  - 127
VL  - 14
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_8_a22/
LA  - ru
ID  - MM_2002_14_8_a22
ER  - 
%0 Journal Article
%A E. E. Krasnovskii
%T Construction of an allowable stress field for a counter functional in the theory of elasticity
%J Matematičeskoe modelirovanie
%D 2002
%P 124-127
%V 14
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_8_a22/
%G ru
%F MM_2002_14_8_a22
E. E. Krasnovskii. Construction of an allowable stress field for a counter functional in the theory of elasticity. Matematičeskoe modelirovanie, Tome 14 (2002) no. 8, pp. 124-127. http://geodesic.mathdoc.fr/item/MM_2002_14_8_a22/

[1] Zarubin B. C., Inzhenernye metody resheniya zadach teploprovodnosti, Energoatomizdat, M., 1983

[2] Zarubin B. C., Prikladnye zadachi termoprochnosti elementov konstruktsii, Mashinostroenie, M., 1985

[3] Zarubin B. C., Selivanov V. V., Variatsionnye i chislennye metody mekhaniki sploshnoi sredy, Izd. MGTU im. N. E. Baumana, M., 1993

[4] Demidov S. P., Teoriya uprugosti, Vysshaya shkola, M., 1979

[5] Vasidzu K., Variatsionnye metody v teorii uprugosti i plastichnosti, Mir, M., 1987

[6] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR

[7] Rekach V. T., Rukovodstvo k resheniyu zadach prikladnoi teorii uprugosti, Vysshaya shkola, M., 1973

[8] Pobedrya B. E., Sheshenin S. V., Kholmatov T., Zadacha v napryazheniyakh, FAN, Tashkent, 1988

[9] Dolin V. V., Postanovka v usiliyakh zadach statiki uprugikh sistem dlya resheniya metodami konechnykh i granichnykh elementov, Dissertatsiya na soiskanie uchenoi stepeni doktora tekhnicheskikh nauk, SPb., 1993