Construction of adaptive irregular triangular grids for 2D multiply connected nonconvex domains
Matematičeskoe modelirovanie, Tome 14 (2002) no. 6, pp. 25-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problems are considered of constructing adaptive irregular triangular grids for 2D multiply connected nonconvex domains. Two original automatic triangulation algorithms having well asymptotic properties are proposed.
@article{MM_2002_14_6_a1,
     author = {I. V. Popov and S. V. Polyakov},
     title = {Construction of adaptive irregular triangular grids for {2D} multiply connected nonconvex domains},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {25--35},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_6_a1/}
}
TY  - JOUR
AU  - I. V. Popov
AU  - S. V. Polyakov
TI  - Construction of adaptive irregular triangular grids for 2D multiply connected nonconvex domains
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 25
EP  - 35
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_6_a1/
LA  - ru
ID  - MM_2002_14_6_a1
ER  - 
%0 Journal Article
%A I. V. Popov
%A S. V. Polyakov
%T Construction of adaptive irregular triangular grids for 2D multiply connected nonconvex domains
%J Matematičeskoe modelirovanie
%D 2002
%P 25-35
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_6_a1/
%G ru
%F MM_2002_14_6_a1
I. V. Popov; S. V. Polyakov. Construction of adaptive irregular triangular grids for 2D multiply connected nonconvex domains. Matematičeskoe modelirovanie, Tome 14 (2002) no. 6, pp. 25-35. http://geodesic.mathdoc.fr/item/MM_2002_14_6_a1/

[1] K. Ho-Le, “Finite element mesh generation methods: a review and classification”, Computer-aided design, 20:1 (1988), 2-38. | DOI

[2] V. V. Shaidurov, Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989 | MR

[3] J. E. Goodman (ed.), J. O'Rourke (ed.), Handbook of Discrete and Computational Geometry, CRC Press, LLC, Boca Raton, FL, 1997 | MR

[4] R. P. Fedorenko, Vvedenie v vychislitelnuyu fiziku, Izd-vo Mosk. fiz.-tekhn. in-ta, M., 1994

[5] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989 | MR | Zbl

[6] D. E.Knut, Iskusstvo programmirovaniya. T. 3. Sortirovka i poisk, Izd. dom “Vilyams”, M., 2000

[7] A. V. Solovev, M. Yu. Shashkov, Ob odnom obobschenii ponyatiya yacheiki Dirikhle dlya nevypukloi oblasti, Preprint IPM AN SSSR No 32, M., 1990

[8] E. Kartasheva, “Reduction of $h$-genus polyhedrons topology”, International Journal of Shape Modeling, 5:2 (1999), 179–194 | DOI

[9] I. G. Pushkina, V. F. Tishkin, “Adaptivnye raschetnye setki iz yacheek Dirikhle dlya resheniya zadach matematicheskoi fiziki: Metodika postroeniya, primery”, Matem. modelirovanie, 12:3 (2000), 97–109 | MR | Zbl

[10] A. D. Alekmandrov, Vnutrennyaya geometriya vypuklykh poverkhnostei, OGIZ, M.-L., 1948

[11] E. V. Shikin, A. V. Boreskov, Kompyuternaya grafika. Poligonalnye modeli, Izd-vo “DIALOG-MIFI”, M., 2000

[12] P. A. Voinovich, D. M. Sharov, “Modelirovanie razryvnykh techenii gaza na nestrukturirovannykh setkakh”, Matematicheskoe modelirovanie, 5:7 (1993), 86–100 | MR | Zbl