Construction of adaptive irregular triangular grids for 2D multiply connected nonconvex domains
Matematičeskoe modelirovanie, Tome 14 (2002) no. 6, pp. 25-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problems are considered of constructing adaptive irregular triangular grids for 2D multiply connected nonconvex domains. Two original automatic triangulation algorithms having well asymptotic properties are proposed.
@article{MM_2002_14_6_a1,
     author = {I. V. Popov and S. V. Polyakov},
     title = {Construction of adaptive irregular triangular grids for {2D} multiply connected nonconvex domains},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {25--35},
     year = {2002},
     volume = {14},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_6_a1/}
}
TY  - JOUR
AU  - I. V. Popov
AU  - S. V. Polyakov
TI  - Construction of adaptive irregular triangular grids for 2D multiply connected nonconvex domains
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 25
EP  - 35
VL  - 14
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_6_a1/
LA  - ru
ID  - MM_2002_14_6_a1
ER  - 
%0 Journal Article
%A I. V. Popov
%A S. V. Polyakov
%T Construction of adaptive irregular triangular grids for 2D multiply connected nonconvex domains
%J Matematičeskoe modelirovanie
%D 2002
%P 25-35
%V 14
%N 6
%U http://geodesic.mathdoc.fr/item/MM_2002_14_6_a1/
%G ru
%F MM_2002_14_6_a1
I. V. Popov; S. V. Polyakov. Construction of adaptive irregular triangular grids for 2D multiply connected nonconvex domains. Matematičeskoe modelirovanie, Tome 14 (2002) no. 6, pp. 25-35. http://geodesic.mathdoc.fr/item/MM_2002_14_6_a1/

[1] K. Ho-Le, “Finite element mesh generation methods: a review and classification”, Computer-aided design, 20:1 (1988), 2-38. | DOI

[2] V. V. Shaidurov, Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989 | MR

[3] J. E. Goodman (ed.), J. O'Rourke (ed.), Handbook of Discrete and Computational Geometry, CRC Press, LLC, Boca Raton, FL, 1997 | MR

[4] R. P. Fedorenko, Vvedenie v vychislitelnuyu fiziku, Izd-vo Mosk. fiz.-tekhn. in-ta, M., 1994

[5] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989 | MR | Zbl

[6] D. E.Knut, Iskusstvo programmirovaniya. T. 3. Sortirovka i poisk, Izd. dom “Vilyams”, M., 2000

[7] A. V. Solovev, M. Yu. Shashkov, Ob odnom obobschenii ponyatiya yacheiki Dirikhle dlya nevypukloi oblasti, Preprint IPM AN SSSR No 32, M., 1990

[8] E. Kartasheva, “Reduction of $h$-genus polyhedrons topology”, International Journal of Shape Modeling, 5:2 (1999), 179–194 | DOI

[9] I. G. Pushkina, V. F. Tishkin, “Adaptivnye raschetnye setki iz yacheek Dirikhle dlya resheniya zadach matematicheskoi fiziki: Metodika postroeniya, primery”, Matem. modelirovanie, 12:3 (2000), 97–109 | MR | Zbl

[10] A. D. Alekmandrov, Vnutrennyaya geometriya vypuklykh poverkhnostei, OGIZ, M.-L., 1948

[11] E. V. Shikin, A. V. Boreskov, Kompyuternaya grafika. Poligonalnye modeli, Izd-vo “DIALOG-MIFI”, M., 2000

[12] P. A. Voinovich, D. M. Sharov, “Modelirovanie razryvnykh techenii gaza na nestrukturirovannykh setkakh”, Matematicheskoe modelirovanie, 5:7 (1993), 86–100 | MR | Zbl