Local Dirichlet problems on subdomains of decomposition in $HP$-discretizations, and optimal algorithms for their solution
Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 51-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the key component for the DD (domain decomposition) algorithms for $hp$ discretizations of second order elliptic partial differential equations. It is related to solving local discrete Dirichlet problems on subdomains of decomposition and is the most time consuming part of DD algorithm. We suggest an optimal (except for the operation of multiplication by an element stiffness matrix unavoidable in any iterative process) solver for these local Dirichlet problems. When incorporated in our earlier developed algorithms, this solver directly leads to the optimal DD solver for the global system of finite element algebraic equations.
@article{MM_2002_14_5_a5,
     author = {V. G. Korneev},
     title = {Local {Dirichlet} problems on subdomains of decomposition in $HP$-discretizations, and optimal algorithms for their solution},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {51--74},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_5_a5/}
}
TY  - JOUR
AU  - V. G. Korneev
TI  - Local Dirichlet problems on subdomains of decomposition in $HP$-discretizations, and optimal algorithms for their solution
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 51
EP  - 74
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_5_a5/
LA  - en
ID  - MM_2002_14_5_a5
ER  - 
%0 Journal Article
%A V. G. Korneev
%T Local Dirichlet problems on subdomains of decomposition in $HP$-discretizations, and optimal algorithms for their solution
%J Matematičeskoe modelirovanie
%D 2002
%P 51-74
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_5_a5/
%G en
%F MM_2002_14_5_a5
V. G. Korneev. Local Dirichlet problems on subdomains of decomposition in $HP$-discretizations, and optimal algorithms for their solution. Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 51-74. http://geodesic.mathdoc.fr/item/MM_2002_14_5_a5/

[1] Ainsworth M., “A preconditioner based on domain decomposition for $h-p$ finite element approximation on quasi-uniform meshes”, SIAM J. Numer. Anal., 33 (1996), 1358–1376 | DOI | MR | Zbl

[2] Ainsworth M., Senior B., “Aspects of an adaptive $hp$-finite element method: Adaptive strategy, conforming approximation and efficient solvers”, Methods Appl. Mech. Engrg., 150 (1997), 65–87 | DOI | MR | Zbl

[3] Axellson O., Vassilevskii P. S., “Algebraic multilevel preconditioning methods I”, SIAM J. Numer. Anal., 56 (1989), 157–177 | MR

[4] Axellson O., Vassilevskii P. S., “Algebraic multilevel preconditioning methods II”, SIAM J. Numer. Anal., 27:6 (1990), 1569–1590 | DOI | MR

[5] Babuška I., Craig A., Mandel J., Pitkaranta J., “Efficient preconditioning for the $p$-version finite element method in two dimensions”, SIAM J. Numer. Anal., 28 (1991), 624–661 | DOI | MR | Zbl

[6] Babuška I., Suri M., “The $h-p$-version of the finite element method with quasiuniform meshes”, Model. Math. et Anal. Numer., 21 (1987), 199–238 | MR | Zbl

[7] Bernardi C., Dauge M., Maday Y., “Relévements de traces presérvant les polinomes”, C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), 333–338 | MR | Zbl

[8] Bernardi G., Maday Y., “Relévements polinomial de traces et application”, RAIRO Model. Math. Anal. Numer., 24 (1990), 557–611 | MR | Zbl

[9] Bramble J., Pasciak J., Xu J., “Prallel multilevel preconditioners”, Math. Comp., 55 (1990), 1–22 | DOI | MR | Zbl

[10] Casarin M. A., “Quasi-optimal Schwarz methods for the conforming spectral element discretization”, SIAM J. Num. Anal., 34 (1997), 2482–2502 | DOI | MR | Zbl

[11] Francken R., Deville M. O., Mund E. H., “On the spectum of the iteration operator associated to the finite difference preconditioning of Chebyshev collocation calculations”, Proceedings of ICOSAHOM'89, eds. C. Canuto, A. Quarteroni, Elsevier Sciences, Amsterdam, 1990, 295–304

[12] George A., Liu J. W-H., Computer solution of large sparse positive definite systems, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981 | MR

[13] Griebel M., Oswald P., “Tensor product type subspace splittings and multilevel iterative methods for anisothropic problems”, Advances Comput. Math., 4 (1995), 171–201 | DOI | MR

[14] Guo B., Cao W., “Inexact solvers on element surfaces for the $p$ and $h-p$ finite element method”, Comput. Methods Appl. Mech. Engrg., 150 (1997), 173–191 | DOI | MR

[15] Haldenwang P., Labrosse G., Abboudi S. Deville M., “Chebyshev 3-d spectral and 2-d pseudospectral solvers for the Helmholtz equations”, J. Comput. Phys., 55 (1984), 115–128 | DOI | MR | Zbl

[16] Ivanov S., Korneev V. G., “Selection of the high order coordinate functions and preconditioning in the frame of the domain decomposition method”, Izvestia Vyshikh Uchebnykh Zavedeniy, 395 (1995), 62–81 | MR | Zbl

[17] Ivanov S. A., Korneev V. G., “Preconditioning in the domain decomposition methods for the $p$-version with the hierarchical bases”, Mathematical Modeling, 8 (1996), 63–73 | MR | Zbl

[18] Kim S. D., Parter S. V., “Preconditioning Chebyshev spectral collocation method for elliptic partial differential equations”, SIAM J. Num. Anal., 33:6, 2375–2400 | DOI | MR | Zbl

[19] Kim S. D., Parter S. V., “Preconditioning Chebyshev spectral collocation by finite difference operators”, SIAM J. Num. Anal., 34:3 (1997), 939–959 | DOI | MR

[20] Korneev V. G., “Pochti optimalnyi method reshenia zadach Dirihle na podoblastiah decompozitsii ierarhicheskoi $hp$-versii (Almost optimal solver for Dirichlet problems on subdomains of decomposition)”, Differentsialnie Uravnenia, 37:7 (2001), 1–10 | MR

[21] Korneev V. G., Flaherty J., Oden J. T., Fish J., “$Hp$-version additive Schwarz algorithms on triangular meshes”, Mathematical Modelling, 14:2 (2002), 61–94 | MR | Zbl

[22] Korneev V., Jensen S., “Preconditioning of the $p$-version of the finite element method”, Comput. Methods Appl. Mech. Engrg., 150 (1997), 215–238 | DOI | MR | Zbl

[23] Korneev V., Jensen S., “Domain decomposition preconditioning in the hierarchical $p$-version of the finite element method”, Applied Numerical Mathematics, 29 (1999), 470–518 | DOI | MR

[24] Maz'ya V., Poborchi S., Differentiable functions on bad domains, World Scientific, Singapore-New Jersy-London-Hong Kong, 1998 | MR

[25] Munos-Sola R., “Polynomial liftings on a tetrahedron and applications to the $h-p$ version of the finite element method in three dimensions”, SIAM J. Numer. Anal., 34 (1997), 282–314 | DOI | MR

[26] Oden J. T., Patra A., Feng Y. S., Domain decomposition solver for adaptive $hp$ finite element methods, VII-th International Conference on Domain Decomposition, State College, Pennsylvania, 1993

[27] Oden J. T., Patra A. Feng Y. S., “Parallel Domain decomposition solver for adaptive $hp$ finite element methods”, SIAM J. Num. Anal., 34 (1997), 2090–2118 | DOI | MR | Zbl

[28] Pavarino L. F., “Additive Schwartz methods for the $p$-version finite element method”, Numer. Math., 66 (1994), 493–515 | DOI | MR | Zbl

[29] Pflaum Ch., “Robust confergence of multilevel algorithms for convection-difusion equations”, Num. Lin. Alg. Appl., 6 (1999), 701–728 | 3.0.CO;2-L class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[30] Pflaum Ch., “Robust confergence of multilevel algorithms for convection-difusion equations”, SIAM J. Num. Anal., 37(2) (2000), 443–469 | DOI | MR | Zbl

[31] Samarskii A. A., Nikolaiev E. N., Numerical methods for grid equations, Birkhauser, Basel, 1989 | Zbl

[32] Schieweck N., “A multigrid convergence proof by a strengthened Caushy inequality for symmetric elliptic boundary value problems”, Second multigrid seminar, ed. Telschow G., Garzau, 1985, 49–62 | MR

[33] Schwab Ch., $p$- and $hp$-Finite element Methods. Theory and Applicatons in Solid and Fluid Mechanics, Clarendon Press, Oxford, 1998 | MR | Zbl

[34] Shen J., Wang F., Xu J., “A finite element multigrid preconditioner for Chebyshev-colocation methods”, Applied Numerical Mathematics, 33 (2000), 471–477 | DOI | MR | Zbl

[35] Szabo B. A., Babuška I., Finite Element Analysis, Wiley Interscience, New York, 1987

[36] Widlund O. B., “Preconditioners for Spectral and Mortar Finite Element Methods”, Proceedings of the Eighth International Conference on Domain Decomposition Methods, Wiley-Interscience, Strasbourg, 1996 | MR

[37] Zhang X., “Multilevel additive Schwarz methods”, Numer. Math., 63 (1992), 521–539 | DOI | MR | Zbl