Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2002_14_5_a3, author = {M. A. Dehghan and M. Radjabalipour}, title = {Relation between generalized frames}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {31--34}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2002_14_5_a3/} }
M. A. Dehghan; M. Radjabalipour. Relation between generalized frames. Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 31-34. http://geodesic.mathdoc.fr/item/MM_2002_14_5_a3/
[1] Aldroubi A., “Portraits of frames”, Proc. Amer. Math. Soc., 123 (1995), 1661–1668 | DOI | MR | Zbl
[2] Askari-Hemmat A., Dehghan M. A., Radjabalipour M., “Generalized frames and their linear independence”, Proc. Amer. Math., 129 (2001), 1143–1147 | DOI | MR | Zbl
[3] Chui C. K., An Introduction to Wavelets, Academic Press, New York, 1992 | MR
[4] Daubechies I., Ten Lectures on Wavelets, Soc. Ind. Appl. Math. Philadelphia, Pennsylvania, 1992 | MR | Zbl
[5] Hernandez E., Weiss G. A., A first Course on Wavelets, CRC Press, 1996 | MR | Zbl
[6] Kaiser G., Generalized wavelet transforms. Part I: The window $X$-ray transforms, technical Reports Seris No 18, Mathematics Department University of Lowell
[7] Kaiser G., A Friendly Guide to Wavelets, second printing, Birkhauser, 1995 | MR