Relation between generalized frames
Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 31-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies generalized frames $h=\{h_m\}_{m\in M}$ defined in a Hilbert space $H$ and indexed by general measure space $(M,S,\mu)$. The paper studies he behaviour of such frames under the transformation of H into itself by bounded linear transformations. It also studies the redundancy of generalized frames.
@article{MM_2002_14_5_a3,
     author = {M. A. Dehghan and M. Radjabalipour},
     title = {Relation between generalized frames},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {31--34},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_5_a3/}
}
TY  - JOUR
AU  - M. A. Dehghan
AU  - M. Radjabalipour
TI  - Relation between generalized frames
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 31
EP  - 34
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_5_a3/
LA  - ru
ID  - MM_2002_14_5_a3
ER  - 
%0 Journal Article
%A M. A. Dehghan
%A M. Radjabalipour
%T Relation between generalized frames
%J Matematičeskoe modelirovanie
%D 2002
%P 31-34
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_5_a3/
%G ru
%F MM_2002_14_5_a3
M. A. Dehghan; M. Radjabalipour. Relation between generalized frames. Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 31-34. http://geodesic.mathdoc.fr/item/MM_2002_14_5_a3/

[1] Aldroubi A., “Portraits of frames”, Proc. Amer. Math. Soc., 123 (1995), 1661–1668 | DOI | MR | Zbl

[2] Askari-Hemmat A., Dehghan M. A., Radjabalipour M., “Generalized frames and their linear independence”, Proc. Amer. Math., 129 (2001), 1143–1147 | DOI | MR | Zbl

[3] Chui C. K., An Introduction to Wavelets, Academic Press, New York, 1992 | MR

[4] Daubechies I., Ten Lectures on Wavelets, Soc. Ind. Appl. Math. Philadelphia, Pennsylvania, 1992 | MR | Zbl

[5] Hernandez E., Weiss G. A., A first Course on Wavelets, CRC Press, 1996 | MR | Zbl

[6] Kaiser G., Generalized wavelet transforms. Part I: The window $X$-ray transforms, technical Reports Seris No 18, Mathematics Department University of Lowell

[7] Kaiser G., A Friendly Guide to Wavelets, second printing, Birkhauser, 1995 | MR