A priori solution estimates of singularly perturbed TWO-point boundary problems
Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 5-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MM_2002_14_5_a1,
     author = {V. B. Andreev},
     title = {A priori solution estimates of singularly perturbed {TWO-point} boundary problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_5_a1/}
}
TY  - JOUR
AU  - V. B. Andreev
TI  - A priori solution estimates of singularly perturbed TWO-point boundary problems
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 5
EP  - 16
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_5_a1/
LA  - ru
ID  - MM_2002_14_5_a1
ER  - 
%0 Journal Article
%A V. B. Andreev
%T A priori solution estimates of singularly perturbed TWO-point boundary problems
%J Matematičeskoe modelirovanie
%D 2002
%P 5-16
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_5_a1/
%G ru
%F MM_2002_14_5_a1
V. B. Andreev. A priori solution estimates of singularly perturbed TWO-point boundary problems. Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 5-16. http://geodesic.mathdoc.fr/item/MM_2002_14_5_a1/

[1] V. B. Andreev, “Funktsiya Grina i apriornye otsenki reshenii monotonnykh trekhtochechnykh singulyarno vozmuschennykh raznostnykh skhem”, Differents. uravneniya, 37:7 (2001) | MR

[2] V. B. Andreev, I. A. Savin, “O ravnomernoi po malomu parametru skhodimosti monotonnoi skhemy A. A. Samarskogo i ee modifikatsii”, Zh. vychisl. matem. i matem. fiz., 35:5 (1995), 739–752 | MR | Zbl

[3] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975 | MR | Zbl

[4] N. Kopteva, “Maximum norm a posteriori error estimates for a one-dimensional convection-diffusion problems” (to appear)