The block Gauss elimination for a system of difference equations with nonlocal boundary conditions
Matematičeskoe modelirovanie, Tome 14 (2002) no. 4, pp. 121-127
Cet article a éte moissonné depuis la source Math-Net.Ru
A variant of the block Qauss elimination method is suggested for the system of two-dimensional difference equations which arise in the nonlocal boundary value problem for the heat conduction equation. Theorems are proved on sufficient numerical stability conditions of the method.
@article{MM_2002_14_4_a9,
author = {V. A. Morozova},
title = {The block {Gauss} elimination for a system of difference equations with nonlocal boundary conditions},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {121--127},
year = {2002},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2002_14_4_a9/}
}
V. A. Morozova. The block Gauss elimination for a system of difference equations with nonlocal boundary conditions. Matematičeskoe modelirovanie, Tome 14 (2002) no. 4, pp. 121-127. http://geodesic.mathdoc.fr/item/MM_2002_14_4_a9/
[1] Ionkin N. I., Morozova V. A, Raznostnye skhemy dlya dvumernogo uravneniya teploprovodnosti s nelokalnymi granichnymi usloviyami, Dep. v VINITI, 22.03.99, No 879-V99, MGU, 1999
[2] Ionkin N. I., Morozova V. A., “Ustoichivost raznostnykh skhem s nelokalnymi granichnymi usloviyami dlya dvumernogo uravneniya teploprovodnosti”, Vestn. Mosk. un-ta. Ser. 15. Vychislitelnaya matematika i kibernetika, 1999, no. 4 | MR
[3] Ionkin N. I., Zadacha dlya uravneniya teploprovodnosti s neklassicheskim (nelokalnym) kraevym usloviem, Preprint No 14, Numerikus Modzerek, Budapesht, 1979
[4] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR