The block Gauss elimination for a system of difference equations with nonlocal boundary conditions
Matematičeskoe modelirovanie, Tome 14 (2002) no. 4, pp. 121-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

A variant of the block Qauss elimination method is suggested for the system of two-dimensional difference equations which arise in the nonlocal boundary value problem for the heat conduction equation. Theorems are proved on sufficient numerical stability conditions of the method.
@article{MM_2002_14_4_a9,
     author = {V. A. Morozova},
     title = {The block {Gauss} elimination for a system of difference equations with nonlocal boundary conditions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {121--127},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_4_a9/}
}
TY  - JOUR
AU  - V. A. Morozova
TI  - The block Gauss elimination for a system of difference equations with nonlocal boundary conditions
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 121
EP  - 127
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_4_a9/
LA  - ru
ID  - MM_2002_14_4_a9
ER  - 
%0 Journal Article
%A V. A. Morozova
%T The block Gauss elimination for a system of difference equations with nonlocal boundary conditions
%J Matematičeskoe modelirovanie
%D 2002
%P 121-127
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_4_a9/
%G ru
%F MM_2002_14_4_a9
V. A. Morozova. The block Gauss elimination for a system of difference equations with nonlocal boundary conditions. Matematičeskoe modelirovanie, Tome 14 (2002) no. 4, pp. 121-127. http://geodesic.mathdoc.fr/item/MM_2002_14_4_a9/

[1] Ionkin N. I., Morozova V. A, Raznostnye skhemy dlya dvumernogo uravneniya teploprovodnosti s nelokalnymi granichnymi usloviyami, Dep. v VINITI, 22.03.99, No 879-V99, MGU, 1999

[2] Ionkin N. I., Morozova V. A., “Ustoichivost raznostnykh skhem s nelokalnymi granichnymi usloviyami dlya dvumernogo uravneniya teploprovodnosti”, Vestn. Mosk. un-ta. Ser. 15. Vychislitelnaya matematika i kibernetika, 1999, no. 4 | MR

[3] Ionkin N. I., Zadacha dlya uravneniya teploprovodnosti s neklassicheskim (nelokalnym) kraevym usloviem, Preprint No 14, Numerikus Modzerek, Budapesht, 1979

[4] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR