Interpolation with $B$-splines
Matematičeskoe modelirovanie, Tome 14 (2002) no. 4, pp. 109-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithms based on using $B$-splines are proposed for constructing periodic and natural interpolating splines. They are simple and have the same notation for arbitrary power of spline. Numerical calculations showed that algorithms are stable and allow performing computations for high powers of splines and large numbers of knots. This provides high accuracy.
@article{MM_2002_14_4_a8,
     author = {N. N. Kalitkin and N. M. Shlyakhov},
     title = {Interpolation with $B$-splines},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--120},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_4_a8/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - N. M. Shlyakhov
TI  - Interpolation with $B$-splines
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 109
EP  - 120
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_4_a8/
LA  - ru
ID  - MM_2002_14_4_a8
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A N. M. Shlyakhov
%T Interpolation with $B$-splines
%J Matematičeskoe modelirovanie
%D 2002
%P 109-120
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_4_a8/
%G ru
%F MM_2002_14_4_a8
N. N. Kalitkin; N. M. Shlyakhov. Interpolation with $B$-splines. Matematičeskoe modelirovanie, Tome 14 (2002) no. 4, pp. 109-120. http://geodesic.mathdoc.fr/item/MM_2002_14_4_a8/

[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl

[2] De Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985 | MR | Zbl

[3] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl

[4] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[5] Farin G., “Splines in CAD/CAM”, Surv. Math. Industry, 1:1 (1991), 39–73 | MR | Zbl

[6] Kalitkin N. N., Kuzmina L. V., “Ob estestvennykh interpolyatsionnykh splainakh”, Matem. modelirovanie, 6:4 (1994), 77–114 | MR | Zbl

[7] Kalitkin N. N., Kuzmina L. V., “Estestvennye interpolyatsionnye splainy proizvolnoi stepeni”, Dokl. RAN, 351:6 (1996), 738–742 | MR | Zbl

[8] Kalitkin N. N., Kuzmina L. V., “Estestvennye interpolyatsionnye splainy vysokikh stepenei”, Matem. modelirovanie, 9:6 (1997), 67–81 | MR | Zbl

[9] Kalitkin N. N., Kuzmina L. V., “Srednekvadratichnaya approksimatsiya splainami”, Matem. modelirovanie, 9:9 (1997), 107–116 | MR | Zbl

[10] Kalitkin N. N., Shlyakhov N. M., “$B$-splainy proizvolnoi stepeni”, Dokl. RAN, 367:2 (1999), 157–160 | MR | Zbl

[11] Kalitkin N. N., Shlyakhov N. M., “$B$-splainy vysokikh stepenei”, Matem. modelirovanie, 11:11 (1999), 64–74 | MR

[12] Kalitkin N. N., Shlyakhov N. M., “Estestvennaya interpolyatsiya $B$-splainami”, Doklady RAN, 374:3 (2000), 299–303 | MR | Zbl

[13] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999