Simulation of unsteady gasdynamic flows
Matematičeskoe modelirovanie, Tome 14 (2002) no. 4, pp. 35-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The predication of unsteady viscous heat-conducting flow behind a circular cylinder is carried out on the base of the kinetically consistent finite difference schemes for unstructured triangular meshes without any turbulence models.
@article{MM_2002_14_4_a2,
     author = {A. V. Zhokhova and B. N. Chetverushkin},
     title = {Simulation of unsteady gasdynamic flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {35--44},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_4_a2/}
}
TY  - JOUR
AU  - A. V. Zhokhova
AU  - B. N. Chetverushkin
TI  - Simulation of unsteady gasdynamic flows
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 35
EP  - 44
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_4_a2/
LA  - ru
ID  - MM_2002_14_4_a2
ER  - 
%0 Journal Article
%A A. V. Zhokhova
%A B. N. Chetverushkin
%T Simulation of unsteady gasdynamic flows
%J Matematičeskoe modelirovanie
%D 2002
%P 35-44
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_4_a2/
%G ru
%F MM_2002_14_4_a2
A. V. Zhokhova; B. N. Chetverushkin. Simulation of unsteady gasdynamic flows. Matematičeskoe modelirovanie, Tome 14 (2002) no. 4, pp. 35-44. http://geodesic.mathdoc.fr/item/MM_2002_14_4_a2/

[1] B. N. Chetverushkin, Kineticheski-soglasovannye raznostnye skhemy v gazovoi dinamike, Izd-vo MGU, M., 1999

[2] T. G. Elizarova, B. N. Chetverushkin, “Kineticheski-soglasovannye raznostnye skhemy dlya modelirovaniya techenii vyazkogo teploprovodnogo gaza”, ZhVM i MF, 28:11 (1988), 695–710 | MR

[3] S. M. Deshpande, “Kinetic theory based new upwind methods for inviscid compressible flow”, AIAA, 1986, 86–0275

[4] J. C. Mandal, S. M. Deshpande, “Higher order accurate kinetic flux splitting method for Euler equations”, Notes on Numerical Fluid Mechanics, 24, Vieweg, Braunschweig, 1989, 384–392 | MR

[5] I. V. Abalakin, A. V. Zhokhova, B. N. Chetverushkin, “Kineticheski soglasovannyi algoritm dlya rascheta gazodinamicheskikh techenii na treugolnykh setkakh”, Matem. modelirovanie, 10:4 (1998), 51–60

[6] I. V. Abalakin, A. V. Zhokhova, “Kineticheski-soglasovannye skhemy s korrektsiei na treugolnykh setkakh”, Differents. uravneniya, 34:7 (1998), 904–910 | MR | Zbl

[7] A. V. Neledova, V. F. Tishkin, “Ispolzovanie adaptivnykh setok neregulyarnoi struktury dlya rascheta razryvnykh techenii s povyshennym poryadkom tochnosti”, Differents. uravneniya, 32:7 (1996), 976–985 | MR | Zbl

[8] J. A. Desideri, A. Dervieux, “Compressible Flow Solvers Using Unstructured Grids”, VKI Lectures Series, 5 (1988) | MR

[9] T. J. Barth, B. C. Jespersen, “The design and application of upwind schemes on unstructured meshes”, AIAA, 1989, 89–0366

[10] I. V. Abalakin, A. V. Zhokhova, B. N. Chetverushkin, “Kineticheski-soglasovannye skhemy povyshennogo poryadka tochnosti”, Matem. modelirovanie, 13:5 (2001), 53–61 | MR | Zbl

[11] K. V. Vyaznikov, V. F. Tishkin, A. P. Favorskii, “Postroenie monotonnykh raznostnykh skhem povyshennogo poryadka approksimatsii dlya sistem uravnenii giperbolicheskogo tipa”, Matem. modelirovanie, 1:5 (1989), 95–120 | MR | Zbl

[12] B. van Leer, “Towards the Ultimate Conservative Difference Scheme. II: Monotonicity and Conservation Combined in a Second-Order Scheme”, J. of Comput. Phys., 14 (1974), 361–370 | DOI | Zbl

[13] B. van Leer, “Towards the Ultimate Conservative Difference Scheme. V: A Second-Order Sequel to Godunov's Method”, J. of Comput. Phys., 32 (1979), 101–136 | DOI | MR

[14] A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws”, J. of Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl

[15] P. K. Sweby, “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws”, SIAM J. on Numerical Analysis, 21:5 (1984), 995–1011 | DOI | MR | Zbl

[16] O. M. Belotserkovskii, “Pryamoe chislennoe modelirovanie svobodnoi razvitoi turbulentnosti: kogerentnye struktury, laminarno turbulentnyi perekhod, khaos”, Etyudy o turbulentnosti, Nauka, M., 1994, 137–222