Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2002_14_4_a2, author = {A. V. Zhokhova and B. N. Chetverushkin}, title = {Simulation of unsteady gasdynamic flows}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {35--44}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2002_14_4_a2/} }
A. V. Zhokhova; B. N. Chetverushkin. Simulation of unsteady gasdynamic flows. Matematičeskoe modelirovanie, Tome 14 (2002) no. 4, pp. 35-44. http://geodesic.mathdoc.fr/item/MM_2002_14_4_a2/
[1] B. N. Chetverushkin, Kineticheski-soglasovannye raznostnye skhemy v gazovoi dinamike, Izd-vo MGU, M., 1999
[2] T. G. Elizarova, B. N. Chetverushkin, “Kineticheski-soglasovannye raznostnye skhemy dlya modelirovaniya techenii vyazkogo teploprovodnogo gaza”, ZhVM i MF, 28:11 (1988), 695–710 | MR
[3] S. M. Deshpande, “Kinetic theory based new upwind methods for inviscid compressible flow”, AIAA, 1986, 86–0275
[4] J. C. Mandal, S. M. Deshpande, “Higher order accurate kinetic flux splitting method for Euler equations”, Notes on Numerical Fluid Mechanics, 24, Vieweg, Braunschweig, 1989, 384–392 | MR
[5] I. V. Abalakin, A. V. Zhokhova, B. N. Chetverushkin, “Kineticheski soglasovannyi algoritm dlya rascheta gazodinamicheskikh techenii na treugolnykh setkakh”, Matem. modelirovanie, 10:4 (1998), 51–60
[6] I. V. Abalakin, A. V. Zhokhova, “Kineticheski-soglasovannye skhemy s korrektsiei na treugolnykh setkakh”, Differents. uravneniya, 34:7 (1998), 904–910 | MR | Zbl
[7] A. V. Neledova, V. F. Tishkin, “Ispolzovanie adaptivnykh setok neregulyarnoi struktury dlya rascheta razryvnykh techenii s povyshennym poryadkom tochnosti”, Differents. uravneniya, 32:7 (1996), 976–985 | MR | Zbl
[8] J. A. Desideri, A. Dervieux, “Compressible Flow Solvers Using Unstructured Grids”, VKI Lectures Series, 5 (1988) | MR
[9] T. J. Barth, B. C. Jespersen, “The design and application of upwind schemes on unstructured meshes”, AIAA, 1989, 89–0366
[10] I. V. Abalakin, A. V. Zhokhova, B. N. Chetverushkin, “Kineticheski-soglasovannye skhemy povyshennogo poryadka tochnosti”, Matem. modelirovanie, 13:5 (2001), 53–61 | MR | Zbl
[11] K. V. Vyaznikov, V. F. Tishkin, A. P. Favorskii, “Postroenie monotonnykh raznostnykh skhem povyshennogo poryadka approksimatsii dlya sistem uravnenii giperbolicheskogo tipa”, Matem. modelirovanie, 1:5 (1989), 95–120 | MR | Zbl
[12] B. van Leer, “Towards the Ultimate Conservative Difference Scheme. II: Monotonicity and Conservation Combined in a Second-Order Scheme”, J. of Comput. Phys., 14 (1974), 361–370 | DOI | Zbl
[13] B. van Leer, “Towards the Ultimate Conservative Difference Scheme. V: A Second-Order Sequel to Godunov's Method”, J. of Comput. Phys., 32 (1979), 101–136 | DOI | MR
[14] A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws”, J. of Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[15] P. K. Sweby, “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws”, SIAM J. on Numerical Analysis, 21:5 (1984), 995–1011 | DOI | MR | Zbl
[16] O. M. Belotserkovskii, “Pryamoe chislennoe modelirovanie svobodnoi razvitoi turbulentnosti: kogerentnye struktury, laminarno turbulentnyi perekhod, khaos”, Etyudy o turbulentnosti, Nauka, M., 1994, 137–222