The Birgchof type asymptotics of some singularly perturbed optimal control problems
Matematičeskoe modelirovanie, Tome 14 (2002) no. 3, pp. 27-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

For one class of linear-quadratic optimal control problems (in case when it is not possible to use boundary functions method) it the variant of Birgchof–Tamarkin–Lomov method is offered. This method lets to construct the quasi-regular asymptotics of the singular solution, which may be written in closed analytical form.
@article{MM_2002_14_3_a2,
     author = {M. G. Dmitriev and Yu. A. Konyaev},
     title = {The {Birgchof} type asymptotics of some singularly perturbed optimal control problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {27--29},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_3_a2/}
}
TY  - JOUR
AU  - M. G. Dmitriev
AU  - Yu. A. Konyaev
TI  - The Birgchof type asymptotics of some singularly perturbed optimal control problems
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 27
EP  - 29
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_3_a2/
LA  - ru
ID  - MM_2002_14_3_a2
ER  - 
%0 Journal Article
%A M. G. Dmitriev
%A Yu. A. Konyaev
%T The Birgchof type asymptotics of some singularly perturbed optimal control problems
%J Matematičeskoe modelirovanie
%D 2002
%P 27-29
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_3_a2/
%G ru
%F MM_2002_14_3_a2
M. G. Dmitriev; Yu. A. Konyaev. The Birgchof type asymptotics of some singularly perturbed optimal control problems. Matematičeskoe modelirovanie, Tome 14 (2002) no. 3, pp. 27-29. http://geodesic.mathdoc.fr/item/MM_2002_14_3_a2/

[1] A. B. Vasileva, V. F. Butuzov, Asimptoticheskoe razlozhenie reshenii singulyarno vozmuschennykh uravnenii, M., 1972 | Zbl

[2] A. B. Vasileva, M. G. Dmitriev, “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki i tekhniki. Matematicheskii analiz, 20, VINITI AN SSSR, 1982, 3–77 | MR

[3] S. A. Lomov, Vvedenie v obschuyu teorii singulyarnykh vozmuschenii, M., 1982

[4] Yu. A. Konyaev, “Konstruktivnye metody issledovaniya mnogotochechnykh kraevykh zadach”, Izv. vuzov. Matem., 1992, no. 2, 57–61 | MR | Zbl

[5] Yu. A. Konyaev, “Ob odnom metode issledovaniya nekotorykh zadach teorii vozmuschenii”, Matem. sb., 184:12 (1993), 133–144 | Zbl

[6] Yu. A. Konyaev, “Metod rasschepleniya v teorii regulyarnykh i singulyarnykh vozmuschenii”, Izv. vuzov. Matem., 2000, no. 6, 10–15 | MR | Zbl