On statistic solutions to Cauchy problem for a first order quasilinear equation
Matematičeskoe modelirovanie, Tome 14 (2002) no. 3, pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Statistic solutions to Cauchy problem for a first order quasilinear equation are considered, existence and uniqueness theorems are proved, relations with measure valued and strong measure valued solutions are investigated.
@article{MM_2002_14_3_a1,
     author = {E. Yu. Panov},
     title = {On statistic solutions to {Cauchy} problem for a first order quasilinear equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_3_a1/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - On statistic solutions to Cauchy problem for a first order quasilinear equation
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 17
EP  - 26
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_3_a1/
LA  - ru
ID  - MM_2002_14_3_a1
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T On statistic solutions to Cauchy problem for a first order quasilinear equation
%J Matematičeskoe modelirovanie
%D 2002
%P 17-26
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_3_a1/
%G ru
%F MM_2002_14_3_a1
E. Yu. Panov. On statistic solutions to Cauchy problem for a first order quasilinear equation. Matematičeskoe modelirovanie, Tome 14 (2002) no. 3, pp. 17-26. http://geodesic.mathdoc.fr/item/MM_2002_14_3_a1/

[1] Tartar L., “Compensated compactness and applications to partial differential equations”, Research notes in mathematics, nonlinear analysis, and mechanics, Heriot-Watt Symposium, 4, 1979, 136–212 | MR | Zbl

[2] DiPerna R. J., “Measure-valued solutions to conservation laws”, Arch. Rational Mech. Anal., 88 (1985), 223–270 | DOI | MR | Zbl

[3] Panov E. Yu., “O meroznachnykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Izv. RAN. Ser. matem., 60:2 (1996), 107–148 | MR | Zbl

[4] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sbornik, 81(123):2 (1970), 228–255 | Zbl

[5] Kruzhkov S. N., Khildebrand F., “Zadacha Koshi dlya kvazilineinykh uravnenii pervogo poryadka v sluchae, kogda oblast zavisimosti ot nachalnykh dannykh beskonechna”, Vestnik Mosk. un-ta, 1974, no. 1, 93–100

[6] Kruzhkov S. N., Andreyanov P. A., “K nelokalnoi teorii zadachi Koshi dlya kvazilineinykh uravnenii pervogo poryadka v klasse lokalno-summiruemykh funktsii”, DAN SSSR, 220:1 (1975), 23–26 | Zbl

[7] Benilan Ph., Equation d'evolution dans un space de Banach quelconque et applications, These de Doctorat d'Etat. Centre d'Orsey. Universite de Paris-Sud, 1972

[8] Kruzhkov S. N., Panov E. Yu., “Konservativnye kvazilineinye zakony pervogo poryadka s beskonechnoi oblastyu zavisimosti ot nachalnykh dannykh”, DAN SSSR, 314:1 (1990), 79–84 | MR | Zbl

[9] Kruzhkov S. N., Panov E. Yu., “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Annali Univ. Ferrara-Sez., XI (1994–1995), 31–53 | MR

[10] Vishik M. I., Fursikov A. V., Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980 | MR

[11] Panov E. Yu., “Silnye meroznachnye resheniya zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka s ogranichennoi meroznachnoi nachalnoi funktsiei”, Vestnik Mosk. Univ-ta, Ser. 1, Matematika. Mekhanika, 1993, no. 1, 20–23 | MR | Zbl