Global solvability of one-dimensional Cauchy problem for the system of magnetic gas dynamics with arbitrary initial conditions
Matematičeskoe modelirovanie, Tome 14 (2002) no. 3, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cauchy problem for the equations system describing one-dimensional ionized gas flow under conditions of the magnetic gas dynamics approximation is considered. The initial data is admitted to be functions with an arbitrary amplitude whose left and right limits are different. An approximate method of solving the problem is constructed, its convergence is established and thus global solvability in the class of functional solutions of the problem considered is proved.
@article{MM_2002_14_3_a0,
     author = {A. V. Gichuk and V. A. Tupchiev},
     title = {Global solvability of one-dimensional {Cauchy} problem for the system of magnetic gas dynamics with arbitrary initial conditions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_3_a0/}
}
TY  - JOUR
AU  - A. V. Gichuk
AU  - V. A. Tupchiev
TI  - Global solvability of one-dimensional Cauchy problem for the system of magnetic gas dynamics with arbitrary initial conditions
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 3
EP  - 16
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_3_a0/
LA  - ru
ID  - MM_2002_14_3_a0
ER  - 
%0 Journal Article
%A A. V. Gichuk
%A V. A. Tupchiev
%T Global solvability of one-dimensional Cauchy problem for the system of magnetic gas dynamics with arbitrary initial conditions
%J Matematičeskoe modelirovanie
%D 2002
%P 3-16
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_3_a0/
%G ru
%F MM_2002_14_3_a0
A. V. Gichuk; V. A. Tupchiev. Global solvability of one-dimensional Cauchy problem for the system of magnetic gas dynamics with arbitrary initial conditions. Matematičeskoe modelirovanie, Tome 14 (2002) no. 3, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2002_14_3_a0/

[1] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980 | MR

[2] Galkin V. A., “Funktsionalnye resheniya zakonov sokhraneniya”, DAN SSSR, 310:4 (1990), 834–839 | MR | Zbl

[3] Galkin V. A., “Teoriya funktsionalnykh reshenii kvazilineinykh sistem zakonov sokhraneniya i ee prilozheniya”, Trudy seminara im. I. G. Petrovskogo, no. 20, Izd-vo MGU, 1997

[4] Tupchiev V. A., “O razreshimosti v tselom zadachi Koshi dlya sistemy gazovoi dinamiki”, DAN RAN, 342:6 (1995), 747–749 | MR | Zbl

[5] Tupchiev V. A., “Globalnaya razreshimost zadachi Koshi dlya sistemy, opisyvayuschei odnomernoe techenie gaza, lishennogo vyazkosti i teploprovodnosti”, Matem. modelirovanie, 8:8 (1996), 51–68 | MR | Zbl

[6] Gichuk A. V., Tupchiev V. A., “Globalnaya razreshimost zadachi Koshi dlya sistemy, opisyvayuschei odnomernoe techenie plazmy”, FPM, 4:4 (1998), 1141–1164 | MR | Zbl

[7] Tupchiev V. A., “Funktsionalnye resheniya zadachi o raspade razryva”, Matem. zametki, 63:2 (1998), 280–288 | MR | Zbl

[8] Vladimirov B. C., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[9] Smagulov Sh. S., Durmagambetov A. A., Iskanderova D. A., “Zadachi Koshi dlya uravneniya magnitnoi gazovoi dinamiki”, Differents. uravneniya, 29:2 (1993) | MR | Zbl

[10] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR

[11] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | Zbl