The new model ideas in the problem of thermal shock
Matematičeskoe modelirovanie, Tome 14 (2002) no. 2, pp. 95-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have investigated the problem of thermal shock of a semi-half-space with moving boundary in the conditions of sharp temperature heating, thermal heating, heating by environment. The dangerous heating regime is found. We have obtained new integral equations that reduce the considered problem to finding the corresponding Green-function; that is much simpler. We have developed the new mathematical theory for the domains which boundaries move with the constant velocity by modification of the thermal potentials method.
@article{MM_2002_14_2_a6,
     author = {\`E. M. Kartashov and L. M. Ozherelkova},
     title = {The new model ideas in the problem of thermal shock},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--108},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_2_a6/}
}
TY  - JOUR
AU  - È. M. Kartashov
AU  - L. M. Ozherelkova
TI  - The new model ideas in the problem of thermal shock
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 95
EP  - 108
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_2_a6/
LA  - ru
ID  - MM_2002_14_2_a6
ER  - 
%0 Journal Article
%A È. M. Kartashov
%A L. M. Ozherelkova
%T The new model ideas in the problem of thermal shock
%J Matematičeskoe modelirovanie
%D 2002
%P 95-108
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_2_a6/
%G ru
%F MM_2002_14_2_a6
È. M. Kartashov; L. M. Ozherelkova. The new model ideas in the problem of thermal shock. Matematičeskoe modelirovanie, Tome 14 (2002) no. 2, pp. 95-108. http://geodesic.mathdoc.fr/item/MM_2002_14_2_a6/

[1] Kartashov E. M., “Dinamicheskaya termouprugost i problemy termicheskogo udara”, Itogi nauki i tekhniki. Seriya Mekhanika deformiruemogo tverdogo tela, 22, VINITI, M., 1991, 55–127

[2] Kartashov E. M., “Analiticheskie metody resheniya kraevykh zadach nestatsionarnoi teploprovodnosti v oblastyakh s dvizhuschimisya granitsami (Analiticheskii obzor, posvyaschennyi 275-yu AN RF)”, Izv. AN RF, Energetika, 1999, no. 5, 3–34

[3] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR

[4] Kartashov E. M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vysshaya shkola, M., 1985

[5] Kartashov E. M., “Metod funktsii Grina pri reshenii kraevykh zadach dlya uravnenii parabolicheskogo tipa v netsilindricheskikh oblastyakh”, DAN RF, 351:1 (1996), 32–36 | MR | Zbl

[6] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR | Zbl