Diagonally implicit Runge--Kutta FSAL methods for stiff and differential-algebraic systems
Matematičeskoe modelirovanie, Tome 14 (2002) no. 2, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Implicit Runge-Kutta methods are considered which first stage coincides with the last stage of previous step. The methods of order 3, 4, 5 are proposed. Advantage of these methods in comparison with singly diagonally implicit Runge-Kutta methods is shown.
@article{MM_2002_14_2_a0,
     author = {L. M. Skvortsov},
     title = {Diagonally implicit {Runge--Kutta} {FSAL} methods for stiff and differential-algebraic systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_2_a0/}
}
TY  - JOUR
AU  - L. M. Skvortsov
TI  - Diagonally implicit Runge--Kutta FSAL methods for stiff and differential-algebraic systems
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 3
EP  - 17
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_2_a0/
LA  - ru
ID  - MM_2002_14_2_a0
ER  - 
%0 Journal Article
%A L. M. Skvortsov
%T Diagonally implicit Runge--Kutta FSAL methods for stiff and differential-algebraic systems
%J Matematičeskoe modelirovanie
%D 2002
%P 3-17
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_2_a0/
%G ru
%F MM_2002_14_2_a0
L. M. Skvortsov. Diagonally implicit Runge--Kutta FSAL methods for stiff and differential-algebraic systems. Matematičeskoe modelirovanie, Tome 14 (2002) no. 2, pp. 3-17. http://geodesic.mathdoc.fr/item/MM_2002_14_2_a0/

[1] Alexander R., “Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s”, SIAM J. Numer. Anal., 14,:6 (1977), 1006–1021 | DOI | MR | Zbl

[2] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR

[3] Khairer E., Bonner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[4] Hosea M. E., Shampine L. F., “Analysis and implementation of TR-BDF2”, Applied Numerical Mathematics, 20:1–3 (1996), 21–37 | DOI | MR | Zbl

[5] Kochetkov K. A., Shirkov P. D., “$L$-zatukhayuschie ROW-metody tretego poryadka tochnosti”, ZhVM i MF, 37:6 (1997), 699–710 | MR | Zbl

[6] Khairer E., Nersett S., Bonner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR