Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2002_14_12_a7, author = {V. A. Gasilov and E. L. Kartasheva and O. G. Olkhovskaya}, title = {A grid-projectional method of self-consistent electron beams simulation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {85--97}, publisher = {mathdoc}, volume = {14}, number = {12}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2002_14_12_a7/} }
TY - JOUR AU - V. A. Gasilov AU - E. L. Kartasheva AU - O. G. Olkhovskaya TI - A grid-projectional method of self-consistent electron beams simulation JO - Matematičeskoe modelirovanie PY - 2002 SP - 85 EP - 97 VL - 14 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2002_14_12_a7/ LA - ru ID - MM_2002_14_12_a7 ER -
%0 Journal Article %A V. A. Gasilov %A E. L. Kartasheva %A O. G. Olkhovskaya %T A grid-projectional method of self-consistent electron beams simulation %J Matematičeskoe modelirovanie %D 2002 %P 85-97 %V 14 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2002_14_12_a7/ %G ru %F MM_2002_14_12_a7
V. A. Gasilov; E. L. Kartasheva; O. G. Olkhovskaya. A grid-projectional method of self-consistent electron beams simulation. Matematičeskoe modelirovanie, Tome 14 (2002) no. 12, pp. 85-97. http://geodesic.mathdoc.fr/item/MM_2002_14_12_a7/
[1] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967
[2] Gasilov V. A., Zakharov S. V., Markov M. B., Olkhovskaya O. G., “Numerical solution of the problem of the electron emission from plane surface”, Proc. of the Int. IMACS Conf. “Matematical Modelling and Applied Mathematics” (Moscow, 1990), Elsevier Sci. Publishers, Amsterdam, 1992
[3] Kartasheva E. L., “Instrumentalnye sredstva podgotovki i analiza dannykh dlya resheniya trekhmernykh zadach matematicheskoi fiziki”, Matem. modelirovanie, 9:7 (1997), 113–127 | Zbl
[4] Gasilov V. A., Karagichev A. B., Kartasheva E. L., Serova N. V., “Interaktivnye sredstva adaptatsii treugolnykh setok”, Fundamentalnye fiziko-matematicheskie problemy i modelirovanie tekhniko-tekhnologicheskikh sistem, Sbornik nauchnykh trudov. Vyp. 3, MGTU “Stankin”, M., 2000, 172–179
[5] Fletcher K., Chislennye metody na osnove metoda Galerkina, Mir, M., 1988
[6] S. J. Zaki, L. R. T. Gardner, T. J. M. Boyd, “A finite – element code for the simulation of one-dimensional Vlasov plasmas, parts I, II”, Journ. of Comp. Phys., 79 (1988), 184–208 | DOI
[7] Olkhovskaya O. G., Issledovanie svoistv proektsionno-setochnoi skhemy dlya rascheta dinamiki elektronov v samosoglasovannom elektricheskom pole, Preprint IPM im. M. V. Keldysha RAN, 1992, No 38 | Zbl
[8] Boldarev A. S., Gasilov V. A., Olkhovskaya O. G., “K resheniyu giperbolicheskikh uravnenii na nestrukturirovannykh setkakh”, Matem. modelirovanie, 8:3 (1996), 51–78 | MR | Zbl
[9] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl
[10] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1981
[11] Gasilov V. A., Olkhovskaya O. G., “Chislennoe reshenie sistemy uravnenii Maksvella na nestrukturirovannykh setkakh”, Differentsialnye uravneniya, 31:7 (1995), 1193–1197 | MR | Zbl
[12] Berezin A. V., Korotkov S. V., Markov M. B. i dr., Samosoglasovannaya chislennaya model dinamiki aksialno-simmetrichnogo puchka relyativistskikh elektronov v idealno provodyaschei tsilindricheskoi polosti, Preprint IPM im. M. V. Keldysha RAN, No 94, 1992 | Zbl
[13] Esterbyu O., Zlatev E., Pryamye metody dlya razrezhennykh matrits, Mir, M., 1987 | MR
[14] Olkhovskaya O. G., Matematicheskie modeli generatsii elektromagnitnykh polei pri vnutrennei elektronnoi emissii, Dissertatsiya na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, M., 1993