A grid-projectional method of self-consistent electron beams simulation
Matematičeskoe modelirovanie, Tome 14 (2002) no. 12, pp. 85-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Galekin technique the authors developed a numerical algorithm appropriate to the simulation of high-energy relativistic electron beams, propagation in technological devices. The essence of the algorithm is the direct solution of the Vlasov–Maxwell system by means of it's approximation using a fixed mesh in a phase spase. The set of discrete models pertinent to 1D, 1,5D, 2D problem formulations is considered and corresponding conservative grid-projectional numerical schemes are constructed and investigated. Some numerical results are given which show good accuracy of the developed algorithms. The algorithm for simulation of beams propagating through objects of complex geometry is constructed via finite-element approximations on triangular unstructured boundary-fitted meshes.
@article{MM_2002_14_12_a7,
     author = {V. A. Gasilov and E. L. Kartasheva and O. G. Olkhovskaya},
     title = {A grid-projectional method of self-consistent electron beams simulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {85--97},
     publisher = {mathdoc},
     volume = {14},
     number = {12},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_12_a7/}
}
TY  - JOUR
AU  - V. A. Gasilov
AU  - E. L. Kartasheva
AU  - O. G. Olkhovskaya
TI  - A grid-projectional method of self-consistent electron beams simulation
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 85
EP  - 97
VL  - 14
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_12_a7/
LA  - ru
ID  - MM_2002_14_12_a7
ER  - 
%0 Journal Article
%A V. A. Gasilov
%A E. L. Kartasheva
%A O. G. Olkhovskaya
%T A grid-projectional method of self-consistent electron beams simulation
%J Matematičeskoe modelirovanie
%D 2002
%P 85-97
%V 14
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_12_a7/
%G ru
%F MM_2002_14_12_a7
V. A. Gasilov; E. L. Kartasheva; O. G. Olkhovskaya. A grid-projectional method of self-consistent electron beams simulation. Matematičeskoe modelirovanie, Tome 14 (2002) no. 12, pp. 85-97. http://geodesic.mathdoc.fr/item/MM_2002_14_12_a7/

[1] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[2] Gasilov V. A., Zakharov S. V., Markov M. B., Olkhovskaya O. G., “Numerical solution of the problem of the electron emission from plane surface”, Proc. of the Int. IMACS Conf. “Matematical Modelling and Applied Mathematics” (Moscow, 1990), Elsevier Sci. Publishers, Amsterdam, 1992

[3] Kartasheva E. L., “Instrumentalnye sredstva podgotovki i analiza dannykh dlya resheniya trekhmernykh zadach matematicheskoi fiziki”, Matem. modelirovanie, 9:7 (1997), 113–127 | Zbl

[4] Gasilov V. A., Karagichev A. B., Kartasheva E. L., Serova N. V., “Interaktivnye sredstva adaptatsii treugolnykh setok”, Fundamentalnye fiziko-matematicheskie problemy i modelirovanie tekhniko-tekhnologicheskikh sistem, Sbornik nauchnykh trudov. Vyp. 3, MGTU “Stankin”, M., 2000, 172–179

[5] Fletcher K., Chislennye metody na osnove metoda Galerkina, Mir, M., 1988

[6] S. J. Zaki, L. R. T. Gardner, T. J. M. Boyd, “A finite – element code for the simulation of one-dimensional Vlasov plasmas, parts I, II”, Journ. of Comp. Phys., 79 (1988), 184–208 | DOI

[7] Olkhovskaya O. G., Issledovanie svoistv proektsionno-setochnoi skhemy dlya rascheta dinamiki elektronov v samosoglasovannom elektricheskom pole, Preprint IPM im. M. V. Keldysha RAN, 1992, No 38 | Zbl

[8] Boldarev A. S., Gasilov V. A., Olkhovskaya O. G., “K resheniyu giperbolicheskikh uravnenii na nestrukturirovannykh setkakh”, Matem. modelirovanie, 8:3 (1996), 51–78 | MR | Zbl

[9] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[10] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1981

[11] Gasilov V. A., Olkhovskaya O. G., “Chislennoe reshenie sistemy uravnenii Maksvella na nestrukturirovannykh setkakh”, Differentsialnye uravneniya, 31:7 (1995), 1193–1197 | MR | Zbl

[12] Berezin A. V., Korotkov S. V., Markov M. B. i dr., Samosoglasovannaya chislennaya model dinamiki aksialno-simmetrichnogo puchka relyativistskikh elektronov v idealno provodyaschei tsilindricheskoi polosti, Preprint IPM im. M. V. Keldysha RAN, No 94, 1992 | Zbl

[13] Esterbyu O., Zlatev E., Pryamye metody dlya razrezhennykh matrits, Mir, M., 1987 | MR

[14] Olkhovskaya O. G., Matematicheskie modeli generatsii elektromagnitnykh polei pri vnutrennei elektronnoi emissii, Dissertatsiya na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, M., 1993