Finite-element solution of panel flutter of shell structures
Matematičeskoe modelirovanie, Tome 14 (2002) no. 12, pp. 55-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite-element algorithm is described to solve the problem of the panel flutter of multilayer loaded/unloaded shell structures subjected to the action of external or internal supersonic gas flow. Some aspects of numerical realization of this algorithm are considered. Calculation results are presented.
@article{MM_2002_14_12_a5,
     author = {S. A. Bochkarev and V. P. Matveenko},
     title = {Finite-element solution of panel flutter of shell structures},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {55--71},
     publisher = {mathdoc},
     volume = {14},
     number = {12},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_12_a5/}
}
TY  - JOUR
AU  - S. A. Bochkarev
AU  - V. P. Matveenko
TI  - Finite-element solution of panel flutter of shell structures
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 55
EP  - 71
VL  - 14
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_12_a5/
LA  - ru
ID  - MM_2002_14_12_a5
ER  - 
%0 Journal Article
%A S. A. Bochkarev
%A V. P. Matveenko
%T Finite-element solution of panel flutter of shell structures
%J Matematičeskoe modelirovanie
%D 2002
%P 55-71
%V 14
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_12_a5/
%G ru
%F MM_2002_14_12_a5
S. A. Bochkarev; V. P. Matveenko. Finite-element solution of panel flutter of shell structures. Matematičeskoe modelirovanie, Tome 14 (2002) no. 12, pp. 55-71. http://geodesic.mathdoc.fr/item/MM_2002_14_12_a5/

[1] Novichkov Yu. N., “Flatter plastin i obolochek”, Itogi nauki i tekhniki. Mekhanika deformiruemogo tverdogo tela, 11, VINITI, M., 1978, 67–122 | MR

[2] Bismarck-Nasr M. N., “Finite element method applied to the supersonic flutter of circular cylindrical shells”, Int. J. Numer. Meth. Engng., 1976, no. 4, 423–435 | DOI | Zbl

[3] Zenkevich O., Metod konechnykh elementov v tekhnike, Mir, M., 1975

[4] Ueda T., Kobayashi S., Kihira M., “Supersonic flutter truncated conical shells”, Trans. Japan. Soc. Aerospace Sci., 20 (1977), 13–30 | MR

[5] Bismark-Nasr M. N., Savio X. R. K., “Reshenie zadachi o sverkhzvukovom flattere konicheskikh obolochek metodom konechnykh elementov”, Raketnaya tekhnika i kosmonavtika, 17:10 (1979), 158–160

[6] Sunder P. J., “Optimum cone angles in aeroelastic flutter”, Comp. and Struc., 17 (1983), 25–29 | DOI | Zbl

[7] Sunder P. J., Ramakrishnan C. V., Sengupta S., “Finite element analysis of 3-ply laminated conical shell for flutter”, Int. J. Numer. Meth. Engng., 19 (1983), 1183–1192 | DOI | Zbl

[8] Shivakumar K. N., Krishna Murty A. V., “A high precision ring element for vibrations of laminated shells”, J. Sound and Vib., 58 (1978), 311–318 | DOI | Zbl

[9] Mason D. R., Slater P. T., “Finite-element application to rocket nozzle aeroelasticity”, J. Propulsion and Power., 3 (1986), 499–507 | DOI

[10] Thornton E. A., Fallon D. J., “An integrated finite element approach for thermal prestress effects on shells of revolution”, ASCE/AHS 23-rd Struct. Dyn. and Mater. Conf., pt. 1 (New Orleans, La, May 10–12, 1982), 171–180

[11] Obraztsov I. F., Vasilev V. V., Bunakov V. A., Optimalnoe armirovanie obolochek vrascheniya iz kompozitsionnykh materialov, Mashinostroenie, M., 1977

[12] Uilkinson Dzh., Rainsh K., Spravochnik algoritmov na yazyke ALGOL: Lineinaya algebra, Mashinostroenie, M., 1976

[13] Leclerc J., “Etude du flottement des coques cylindriques minces dans le eadre de la theorie du potentiel linearise. Premiere partie: Determination des forces aerodynamiques”, Journal de Mecanique, 1970, no. 1, 111–154 | Zbl

[14] Ilyushin A. A., “Zakon ploskikh sechenii pri bolshikh sverkhzvukovykh skorostyakh”, PmiM, 1956, no. 6, 733–755

[15] Voss H. M., “The effect of an external supersonic flow on the vibration characteristics of thin cylindrical shells”, J. Aerospase Sciences, 3 (1961), 945–956 | MR

[16] Krumkhaar, “Tochnost lineinoi porshnevoi teorii v primenenii k tsilindricheskim obolochkam”, Raketnaya tekhnika i kosmonavtika, 1963, no. 6, 180–183

[17] Bolotin V. V., Nekonservativnye zadachi teorii uprugoi ustoichivosti, Nauka, M., 1961

[18] Ilyushin A. A., Kiiko I. A., “Zakon ploskikh sechenii v sverkhzvukovoi aerodinamike i problema panelnogo flattera”, MTT, 1995, no. 6, 138–142 | MR

[19] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1967 | MR

[20] Gupta K. K., “Solution of eigenvalue problems by Sturm sequence method”, Int. J. Num. Meth. Eng., 4 (1972), 379–404 | DOI | Zbl

[21] Gupta K. K., “Eigenproblem solution by a combined Sturm sequence and inverse iteration technique”, Int. J. Num. Meth. Eng., 7 (1973), 17–42 | DOI | MR | Zbl

[22] Gupta K. K., “Eigenproblem solution of damped structural systems”, Int. J. Num. Meth. Eng., 8 (1974), 877–911 | DOI | Zbl

[23] Gupta K. K., “On a numerical solution of the supersonic panel flutter eigenproblem”, Int. J. Num. Meth. Eng., 10 (1976), 637–645 | DOI | MR | Zbl

[24] Muller D. E., “A method for solving algebraic equations using an automatic computer”, Mathematical Table, 10 (1956), 208–215 | DOI | MR | Zbl

[25] Zhidkov I. P., Berezin N. S., Metody vychislenii, T. 1, Nauka, M., 1966 | Zbl

[26] Matveenko V. P., “Ob odnom algoritme resheniya zadachi o sobstvennykh kolebaniyakh uprugikh tel metodom konechnykh elementov”, Kraevye zadachi teorii uprugosti i vyazkouprugosti, Sverdlovsk, 1990, 20–24

[27] Vanin G. A., Semenyuk N. P., Emelyanov R. F., Ustoichivost obolochek iz armirovannykh materialov, Naukova dumka, Kiev, 1978