Convergence examples for discrete approximations to a multidimensional Pareto set
Matematičeskoe modelirovanie, Tome 14 (2002) no. 12, pp. 48-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the $n$-dimensional space, a multicriteria problem with $n$ objective functions is considered. Discrete approximations to the Pareto set converge as $N^{-1/n}$ where $N$ is the number of trial points.
@article{MM_2002_14_12_a4,
     author = {I. M. Sobol' and E. E. Myshetskaya},
     title = {Convergence examples for discrete approximations to a multidimensional {Pareto} set},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {48--54},
     publisher = {mathdoc},
     volume = {14},
     number = {12},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_12_a4/}
}
TY  - JOUR
AU  - I. M. Sobol'
AU  - E. E. Myshetskaya
TI  - Convergence examples for discrete approximations to a multidimensional Pareto set
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 48
EP  - 54
VL  - 14
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_12_a4/
LA  - ru
ID  - MM_2002_14_12_a4
ER  - 
%0 Journal Article
%A I. M. Sobol'
%A E. E. Myshetskaya
%T Convergence examples for discrete approximations to a multidimensional Pareto set
%J Matematičeskoe modelirovanie
%D 2002
%P 48-54
%V 14
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_12_a4/
%G ru
%F MM_2002_14_12_a4
I. M. Sobol'; E. E. Myshetskaya. Convergence examples for discrete approximations to a multidimensional Pareto set. Matematičeskoe modelirovanie, Tome 14 (2002) no. 12, pp. 48-54. http://geodesic.mathdoc.fr/item/MM_2002_14_12_a4/

[1] I. M. Sobol, R. B. Statnikov, Vybor optimalnykh parametrov v zadachakh so mnogimi kriteriyami, Nauka, M., 1981 | MR

[2] I. M. Sobol', “An efficient approach to multicriteria optimum design problems”, Surveys on Math. for Industry, 1:4 (1992), 259–281 | MR | Zbl

[3] W. Stadler, “Initiators of multicriteria optimization”, Recent Advances on Historical Development of Vector Optimization, Proc. Internat. Conf. (Darmstadt, 1986), Lecture Notes in Economics and Math. Systems, 294, eds. Jahn J., Krabs W., 1987, 3–47

[4] I. M. Sobol, S. V. Kartyshev, I. A. Kulchitskaya, Yu. L. Levitan, “O mnogokriterialnoi optimizatsii matematicheskikh modelei”, Matem. modelirovanie, 6:6 (1994), 85–93 | MR | Zbl

[5] I. M. Sobol', Yu. L. Levitan, “Error estimates for the crude approximation of the trade-off curve”, Multiple Criteria Decision Making, Proc. 12th Internat. Conf. Hagen, eds. Fandel G., Crab T., Springer, 1997, 83–92 | MR | Zbl

[6] I. M. Sobol, E. E. Myshetskaya, “Convergence estimates for crude approximations of a Pareto set”, Computers Maths with Applies (to appear)

[7] I. M. Sobol, “O poiske ekstremalnykh znachenii funktsii ot neskolkikh peremennykh, udovletvoryayuschei obschemu usloviyu Lipshitsa”, Zh. vychis. matem. i matem. fiziki, 28:4 (1988), 483–491 | MR

[8] I. M. Sobol, “O kvadraturnykh formulakh dlya funktsii ot neskolkikh peremennykh, udovletvoryayuschikh obschemu usloviyu Lipshitsa”, Zh. vychis. matem. i matem. fiziki, 29:6 (1989), 935–941 | MR | Zbl

[9] I. M. Sobol, Mnogomernye kvadraturnye formuly i funktsii Khaara, Nauka, M., 1969 | MR