Application of finite superelement method for solving convection-diffusion problems
Matematičeskoe modelirovanie, Tome 14 (2002) no. 11, pp. 78-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite superelement method is used to solve convection-diffusion problems. The particular attention is paid for singularly perturbed problems in convective-dominated case. It corresponds to existance of thin interior and boundary layers in the solution; their description is difficult for numerical analysis. The implemented approach belongs to a class of stabilized Galerkin methods, that have been widely used for last years. The results of numerical experiments and comparison with Galerkin/Least Squares are presented.
@article{MM_2002_14_11_a7,
     author = {V. T. Zhukov and N. D. Novikova and L. G. Strakhovskaya and R. P. Fedorenko and O. B. Feodoritova},
     title = {Application of finite superelement method for solving convection-diffusion problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {78--92},
     publisher = {mathdoc},
     volume = {14},
     number = {11},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_11_a7/}
}
TY  - JOUR
AU  - V. T. Zhukov
AU  - N. D. Novikova
AU  - L. G. Strakhovskaya
AU  - R. P. Fedorenko
AU  - O. B. Feodoritova
TI  - Application of finite superelement method for solving convection-diffusion problems
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 78
EP  - 92
VL  - 14
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_11_a7/
LA  - ru
ID  - MM_2002_14_11_a7
ER  - 
%0 Journal Article
%A V. T. Zhukov
%A N. D. Novikova
%A L. G. Strakhovskaya
%A R. P. Fedorenko
%A O. B. Feodoritova
%T Application of finite superelement method for solving convection-diffusion problems
%J Matematičeskoe modelirovanie
%D 2002
%P 78-92
%V 14
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_11_a7/
%G ru
%F MM_2002_14_11_a7
V. T. Zhukov; N. D. Novikova; L. G. Strakhovskaya; R. P. Fedorenko; O. B. Feodoritova. Application of finite superelement method for solving convection-diffusion problems. Matematičeskoe modelirovanie, Tome 14 (2002) no. 11, pp. 78-92. http://geodesic.mathdoc.fr/item/MM_2002_14_11_a7/

[1] L. G. Strakhovskaya, R. P. Fedorenko, “Ob odnoi spetsialnoi raznostnoi skheme”, Chislennye metody mekhaniki sploshnoi sredy, 7:4 (1976), 149–163

[2] R. P. Fedorenko, “O nekotorykh zadachakh i priblizhennykh metodakh vychislitelnoi mekhaniki”, ZhVM i MF, 34:2 (1994), 267–289 | MR | Zbl

[3] R. P. Fedorenko, “Finite Superelements Method and Multigrid Method in Problems of Elasticity Theory”, Comp. Fluid Dynamics Journal, 5:2 (1996), 203–212

[4] V. T. Zhukov, L. G. Strakhovskaya, R. P. Fedorenko, O. B. Feodoritova, Ob odnom napravlenii v konstruirovanii raznostnykh skhem, 2000, Predstavlena k pechati

[5] T. J. R. Hughes, A. N. Brooks, “A multidimensional upwind scheme with no crosswind diffusion”, Finite Element Method For Convection Dominated Flows, 34, ed. T. J. R. Hughes, AMD, New York, 1979, 19–35 | MR | Zbl

[6] T. J. R. Hughes, L. P. Franca, C. M. Hilbert, “A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least squares method for advectivediffusive equations”, Comput. Methods Appl. Mech. Engrg., 73:2 (1989), 173–189 | DOI | MR | Zbl

[7] F. Brezzi, L. P. Franca, T. J. R. Hughes, A. Russo, Comput. Methods Appl. Mech. Engrg., 145 (1997), 329–339 | DOI | MR | Zbl

[8] T. J. R. Hughes, “Multiscale phenomena: Green's function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods”, Comput. Methods Appl. Mech. Engrg., 127 (1995), 387–401 | DOI | MR | Zbl

[9] T. J. R. Hughes, G. R. Feijoo, L. Mazzei,J-B. Quincy, “The variational multiscale method a paradigm for computational mechanics”, Comput. Methods Appl. Mech. Engrg., 166 (1998), 3–24 | DOI | MR | Zbl

[10] F. Brezzi, L. P. Franca, A. Russo, “Further consideration on residual-free bubbles for advectivediffusive equation”, Comput. Methods Appl. Mech. Engrg., 166 (1998), 25–33 | DOI | MR | Zbl

[11] T. J. R. Hughes, “Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier–Stokes equations”, Intrn. Journ. for Numer. Met. in Fluids, 7 (1987), 1261–1275 | DOI | MR | Zbl

[12] L. D. Landau, M. L. Lifshits, Teoreticheskaya fizika. Mekhanika sploshnykh sred, M., 1954

[13] I. Harari, L. Franca, S. P. Oliveira, “Streamline design of stability parameters for advectiondiffusion problems”, Journal of Computational Physics, 2000, submitted for publication