Numerical solution of boundary value problems in unlimited area
Matematičeskoe modelirovanie, Tome 14 (2002) no. 11, pp. 10-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new approach to solution of boundary value problems in unlimited area is developed. The use of quasi-uniform grids allows solving such problems, stating a boundary condition directly on infinity. Various variants of quasiequidistant grids are constructed and their properties are investigated. Difference schemes ensuring consistency on a grid with infinite interval are developed. The offered approach is successfully tested on a heat conduction problem in semi-infinite area and for evaluation of linear differential operators spectra.
@article{MM_2002_14_11_a1,
     author = {E. A. Alshina and N. N. Kalitkin and S. L. Panchenko},
     title = {Numerical solution of boundary value problems in unlimited area},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {10--22},
     publisher = {mathdoc},
     volume = {14},
     number = {11},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_11_a1/}
}
TY  - JOUR
AU  - E. A. Alshina
AU  - N. N. Kalitkin
AU  - S. L. Panchenko
TI  - Numerical solution of boundary value problems in unlimited area
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 10
EP  - 22
VL  - 14
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_11_a1/
LA  - ru
ID  - MM_2002_14_11_a1
ER  - 
%0 Journal Article
%A E. A. Alshina
%A N. N. Kalitkin
%A S. L. Panchenko
%T Numerical solution of boundary value problems in unlimited area
%J Matematičeskoe modelirovanie
%D 2002
%P 10-22
%V 14
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_11_a1/
%G ru
%F MM_2002_14_11_a1
E. A. Alshina; N. N. Kalitkin; S. L. Panchenko. Numerical solution of boundary value problems in unlimited area. Matematičeskoe modelirovanie, Tome 14 (2002) no. 11, pp. 10-22. http://geodesic.mathdoc.fr/item/MM_2002_14_11_a1/

[1] I. L. Sofronov, Tochnye iskusstvennye granichnye usloviya dlya nekotorykh zadach aerodinamiki i difraktsii, Avtoreferat dokt. dis., IMM RAN, M., 1999

[2] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978 | MR

[3] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, Fizmatlit, M., 1963

[4] N. N. Kalitkin, I. O. Kuznetsov, S. L. Panchenko, “Metod kvaziravnomernykh setok v beskonechnoi oblasti”, DAN, 374:5 (2000), 598–601 | MR | Zbl

[5] N. N. Kalitkin, “Nelineinye raznostnye skhemy dlya giperbolicheskikh uravnenii.”, ZhVM i MF, 5:6 (1965), 1107–1115 | MR | Zbl

[6] A. F. Nikiforov, V. T. Novikov, V. B. Uvarov, Kvantovo-statisticheskie modeli vysokotemperaturnoi plazmy, Nauka, M., 2000 | Zbl

[7] G. I. Marchuk, V. V. Shaidurov, Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[8] H. H. Rosenbrock, “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1963), 329–330 | DOI | MR | Zbl

[9] H. H. Kalitkin, S. L. Panchenko, “Optimalnye dvukhstadiinye skhemy dlya zhestkikh sistem”, Doklady AN, 361:3 (1998), 307–310 | MR | Zbl

[10] E. A. Alshina, N. N. Kalitkin, “Vychislenie spektrov lineinykh differentsialnykh operatorov”, DAN (to appear)

[11] E. P. Zhidkov, I. V. Puzynin, “Ob odnom metode vvedeniya parametra pri reshenii kraevykh zadach dlya nelineinykh obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, ZhVM i MF, 7:5 (1967), 1086–1095 | Zbl

[12] V. V. Ermakov, N. N. Kalitkin, “Optimalnyi shag i regulyarizatsiya metoda Nyutona”, ZhVM i MF, 21:2 (1981), 491–497 | MR | Zbl

[13] Dzh. Kh. Uilkinson, Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970