The entropy theorem for a family of quasi-gas-dynamic systems of equations
Matematičeskoe modelirovanie, Tome 14 (2002) no. 11, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorem of entropy non-decreasing is proved for a family of quasi-gas-dynamic systems of differential equations, which originate from kinetic models and are applied to simulations of a wide class of gas flows.
@article{MM_2002_14_11_a0,
     author = {L. W. Dorodnicyn},
     title = {The entropy theorem for a family of quasi-gas-dynamic systems of equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {14},
     number = {11},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_11_a0/}
}
TY  - JOUR
AU  - L. W. Dorodnicyn
TI  - The entropy theorem for a family of quasi-gas-dynamic systems of equations
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 3
EP  - 9
VL  - 14
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_11_a0/
LA  - ru
ID  - MM_2002_14_11_a0
ER  - 
%0 Journal Article
%A L. W. Dorodnicyn
%T The entropy theorem for a family of quasi-gas-dynamic systems of equations
%J Matematičeskoe modelirovanie
%D 2002
%P 3-9
%V 14
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_11_a0/
%G ru
%F MM_2002_14_11_a0
L. W. Dorodnicyn. The entropy theorem for a family of quasi-gas-dynamic systems of equations. Matematičeskoe modelirovanie, Tome 14 (2002) no. 11, pp. 3-9. http://geodesic.mathdoc.fr/item/MM_2002_14_11_a0/

[1] B. N. Chetverushkin, Kineticheski-soglasovannye skhemy v gazovoi dinamike: novaya model vyazkogo gaza, algoritmy, parallelnaya realizatsiya, prilozheniya, Izd. MGU, M., 1999

[2] T. G. Elizarova, B. N. Chetverushkin, Kineticheski soglasovannye skhemy dlya modelirovaniya techenii vyazkogo teploprovodnogo gaza, Zh. vychisl. matem. i matem. fiz., 28, no. 11, 1988 | MR | Zbl

[3] T. G. Elizarova, Yu. V. Sheretov., “Invariantnyi vid i asimptoticheskie svoistva obobschennoi kvazigazodinamicheskoi sistemy”, Zh. vychisl. matem. i matem. fiz., 31:7 (1991), 1042–1050 | MR | Zbl

[4] I. A. Graur, B. N. Chetverushkin, “K obosnovaniyu kineticheski-soglasovannykh skhem s korrektsiei”, Matem. modelirovanie, 9:11 (1997), 111–118 | MR | Zbl

[5] Yu. V. Sheretov, Teorema ob entropii dlya kvazigazodinamicheskikh uravnenii, Preprint No 131. IPM im. M. V. Keldysha AN SSSR, M., 1990

[6] L. V. Dorodnitsyn, B. N. Chetverushkin, “Ob odnoi neyavnoi skheme dlya modelirovaniya dozvukovogo techeniya gaza”, Matem. modelirovanie, 9:5 (1997), 108–118 | MR | Zbl

[7] L. V. Dorodnitsyn, B. N. Chetverushkin, “Kineticheski soglasovannye skhemy dlya modelirovaniya techenii vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1875–1889 | MR | Zbl

[8] L. V. Dorodnitsyn, B. N. Chetverushkin, N. G. Churbanova, “Kineticheski soglasovannye raznostnye skhemy i kvazigazodinamicheskaya sistema dlya modelirovaniya techenii plotnykh gazov i zhidkostei”, Matem. modelirovanie, 13:4 (2001), 47–57 | MR | Zbl