Numerical simulation of the streamline of the 3-D obstacle with stratified flow
Matematičeskoe modelirovanie, Tome 14 (2002) no. 10, pp. 59-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical model of the spatial flow over an obstacle of arbitrary shape is proposed on the basis of the equations of a viscous incompressible density-inhomogeneous fluid. The method of fictitious domains is used for the solution of the problem on the boundary. Some computational results are presented that illustrated the influence of the shapes of obstacles and of upstream flow velocity on the structure of lee waves.
@article{MM_2002_14_10_a4,
     author = {S. D. Mausumbekova and A. Zh. Naimanova and Sh. S. Smagulov},
     title = {Numerical simulation of the streamline of the {3-D} obstacle with stratified flow},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--68},
     publisher = {mathdoc},
     volume = {14},
     number = {10},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_10_a4/}
}
TY  - JOUR
AU  - S. D. Mausumbekova
AU  - A. Zh. Naimanova
AU  - Sh. S. Smagulov
TI  - Numerical simulation of the streamline of the 3-D obstacle with stratified flow
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 59
EP  - 68
VL  - 14
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_10_a4/
LA  - ru
ID  - MM_2002_14_10_a4
ER  - 
%0 Journal Article
%A S. D. Mausumbekova
%A A. Zh. Naimanova
%A Sh. S. Smagulov
%T Numerical simulation of the streamline of the 3-D obstacle with stratified flow
%J Matematičeskoe modelirovanie
%D 2002
%P 59-68
%V 14
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_10_a4/
%G ru
%F MM_2002_14_10_a4
S. D. Mausumbekova; A. Zh. Naimanova; Sh. S. Smagulov. Numerical simulation of the streamline of the 3-D obstacle with stratified flow. Matematičeskoe modelirovanie, Tome 14 (2002) no. 10, pp. 59-68. http://geodesic.mathdoc.fr/item/MM_2002_14_10_a4/

[1] J. W. Miles, “Lee waves in a stratified flow. Part 2. Semi-circular obstacle”, J. Fluid Mech., 33:4 (1968), 803–814 | DOI | Zbl

[2] Dzh. Laitkhill, Volny v zhidkostyakh, Mir, M., 1981 | MR

[3] E. M. Pekelis, “Chislennoe reshenie prostranstvennoi nelineinoi zadachi obtekaniya prepyatstviya vozdushnym potokom”, Trudy MMTs, 14, 1966, 36–47

[4] I. G. Granberg, “Prostranstvennaya zadacha obtekaniya prepyatstviya potokom neszhimaemoi stratifitsirovannoi zhidkosti”, Izvestiya AN SSSR, FAO, 19:4 (1983)

[5] V. Z. Kiselnikova, “Chislennye eksperimenty po raschetu gornykh voln v realnoi atmosfere”, Trudy GNITs SSSR, 189, 1978, 60–72

[6] G. Onishi, “A Numerical method for Three-dimensional Mountain Waves”, J. Met. Soc., 47 (1969), 352–359

[7] W. M. Brighton, “Strongly stratified flow past three-dimensional obstacles”, Quart. J. R. Met. Soc., 104 (1978), 289–307 | DOI

[8] O. M. Belotserkovskii, Chislennoe modelirovanie v mekhanike sploshnykh sred, Nauka, M., 1984 | MR

[9] P. N. Vabischevich, Metod fiktivnykh oblastei v zadachakh matematicheskoi fiziki, MGU, M., 1991

[10] Sh. S. Smagulov, Metod fiktivnykh oblastei dlya kraevoi zadachi uravnenii Nave–Stoksa, Preprint AN SSSR. Sib. otd. VTs. No 68, Novosibirsk, 1979

[11] S. D. Mausumbekova, Chislennoe modelirovanie obtekaniya orograficheskikh prepyatstvii, oblakoobrazovaniya i vypadeniya osadkov, Almaty: KazGU im. Al-Farabi, 1996, dissertatsiya na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk

[12] S. O. Belotserkovskii, A. R. Pastushkov, Chislennoe modelirovanie techeniya vyazkoi stratifitsirovannoi zhidkosti nad polukruglym prepyatstviem, Preprint VTs AN SSSR, M., 1982