Spatial distributed model of carbon global cycle in bioshere
Matematičeskoe modelirovanie, Tome 13 (2001) no. 9, pp. 45-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of global biosphere dynamics modeling under anthropogenic activity are presented. Calculations are based on a new version of a global atmosphere – plants – soil system carbon cycle model having high spatial resolution $0.5\times 0.5$ deg. at geographical grid. The carbon dioxide emissions to atmosphere, which originate from fossil fuels burning, deforestation and soil erosion are taken into consideration. The forecasts of carbon dynamics and carbon balance for whole the biosphere and for the countries and ecotypes are calculated. It was calculated that an effect of 10-year delay in initiating of the Kyoto Protocol on United Nations Framework Convention on Climate Change would be small. Estimations of fulfilment of Le Chatellier principle are made.
@article{MM_2001_13_9_a3,
     author = {A. M. Tarko and M. V. Kuznetsova},
     title = {Spatial distributed model of carbon global cycle in bioshere},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {45--54},
     publisher = {mathdoc},
     volume = {13},
     number = {9},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2001_13_9_a3/}
}
TY  - JOUR
AU  - A. M. Tarko
AU  - M. V. Kuznetsova
TI  - Spatial distributed model of carbon global cycle in bioshere
JO  - Matematičeskoe modelirovanie
PY  - 2001
SP  - 45
EP  - 54
VL  - 13
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2001_13_9_a3/
LA  - ru
ID  - MM_2001_13_9_a3
ER  - 
%0 Journal Article
%A A. M. Tarko
%A M. V. Kuznetsova
%T Spatial distributed model of carbon global cycle in bioshere
%J Matematičeskoe modelirovanie
%D 2001
%P 45-54
%V 13
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2001_13_9_a3/
%G ru
%F MM_2001_13_9_a3
A. M. Tarko; M. V. Kuznetsova. Spatial distributed model of carbon global cycle in bioshere. Matematičeskoe modelirovanie, Tome 13 (2001) no. 9, pp. 45-54. http://geodesic.mathdoc.fr/item/MM_2001_13_9_a3/