On regularization of ill-posed problem using wavelets
Matematičeskoe modelirovanie, Tome 13 (2001) no. 9, pp. 110-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The search of wavelet subspace (scale) in which the ill-posed problem is stable is considered. For every scale, the minimum eigenvalue of Hessian is calculated and compared with data error. This eigenvalue is calculated by iterations using the Hessian action by a vector. The residual gradient used for Hessian action is obtained via adjoint problem. The estimation of inflow parameters from outflow data for supersonic viscous flow was used as a model problem. The numerical tests demonstrate the feasibility of the stable scale estimation.
@article{MM_2001_13_9_a11,
     author = {A. K. Alekseev},
     title = {On regularization of ill-posed problem using wavelets},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {110--118},
     publisher = {mathdoc},
     volume = {13},
     number = {9},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2001_13_9_a11/}
}
TY  - JOUR
AU  - A. K. Alekseev
TI  - On regularization of ill-posed problem using wavelets
JO  - Matematičeskoe modelirovanie
PY  - 2001
SP  - 110
EP  - 118
VL  - 13
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2001_13_9_a11/
LA  - ru
ID  - MM_2001_13_9_a11
ER  - 
%0 Journal Article
%A A. K. Alekseev
%T On regularization of ill-posed problem using wavelets
%J Matematičeskoe modelirovanie
%D 2001
%P 110-118
%V 13
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2001_13_9_a11/
%G ru
%F MM_2001_13_9_a11
A. K. Alekseev. On regularization of ill-posed problem using wavelets. Matematičeskoe modelirovanie, Tome 13 (2001) no. 9, pp. 110-118. http://geodesic.mathdoc.fr/item/MM_2001_13_9_a11/