Two-level simulation of internal two-phase flows
Matematičeskoe modelirovanie, Tome 13 (2001) no. 7, pp. 44-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two-level approach to the simulation of internal two-phase flows is proposed. Models of lower level correspond to the processes passing near the individual particles or droplets and models of upper level correspond to the processes passing in the whole computational domain. Combined solution of lower and upper level problems makes it possible to avoid introduction of different empirical corrections taking into account distinction of particle shape from spherical, presence of recirculation region and weak beyond particles, relative motion of particle and fluid and some other effects. Investigation of hydrodynamics processes at unstable free motion of nonspherical particle in the not uniform flow on the base of developed tools of numerical simulation.
@article{MM_2001_13_7_a7,
     author = {K. N. Volkov and V. N. Emelyanov and E. L. Ryabova},
     title = {Two-level simulation of internal two-phase flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {44--48},
     publisher = {mathdoc},
     volume = {13},
     number = {7},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2001_13_7_a7/}
}
TY  - JOUR
AU  - K. N. Volkov
AU  - V. N. Emelyanov
AU  - E. L. Ryabova
TI  - Two-level simulation of internal two-phase flows
JO  - Matematičeskoe modelirovanie
PY  - 2001
SP  - 44
EP  - 48
VL  - 13
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2001_13_7_a7/
LA  - ru
ID  - MM_2001_13_7_a7
ER  - 
%0 Journal Article
%A K. N. Volkov
%A V. N. Emelyanov
%A E. L. Ryabova
%T Two-level simulation of internal two-phase flows
%J Matematičeskoe modelirovanie
%D 2001
%P 44-48
%V 13
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2001_13_7_a7/
%G ru
%F MM_2001_13_7_a7
K. N. Volkov; V. N. Emelyanov; E. L. Ryabova. Two-level simulation of internal two-phase flows. Matematičeskoe modelirovanie, Tome 13 (2001) no. 7, pp. 44-48. http://geodesic.mathdoc.fr/item/MM_2001_13_7_a7/