Implicit square formulas
Matematičeskoe modelirovanie, Tome 13 (2001) no. 6, pp. 117-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

For numerical integration of $y_i=f(x_i)$, $x\in[a,b]$, $i=\overline{0,n}$ functions that are arrangemented on nonregular scale with peculiarities new classes of implicit algorithms are presented based on calculation of integrals $I_i^{i+1}=\int\limits_{x_i}^{x_{i+1}}f(x)dx$ from algebraic systems of linear algebraic functions.
@article{MM_2001_13_6_a18,
     author = {V. I. Kireev and G. V. Tsirkov},
     title = {Implicit square formulas},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {117--123},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2001_13_6_a18/}
}
TY  - JOUR
AU  - V. I. Kireev
AU  - G. V. Tsirkov
TI  - Implicit square formulas
JO  - Matematičeskoe modelirovanie
PY  - 2001
SP  - 117
EP  - 123
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2001_13_6_a18/
LA  - ru
ID  - MM_2001_13_6_a18
ER  - 
%0 Journal Article
%A V. I. Kireev
%A G. V. Tsirkov
%T Implicit square formulas
%J Matematičeskoe modelirovanie
%D 2001
%P 117-123
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2001_13_6_a18/
%G ru
%F MM_2001_13_6_a18
V. I. Kireev; G. V. Tsirkov. Implicit square formulas. Matematičeskoe modelirovanie, Tome 13 (2001) no. 6, pp. 117-123. http://geodesic.mathdoc.fr/item/MM_2001_13_6_a18/