Kinetically consistent schemes of a~higher accuracy order
Matematičeskoe modelirovanie, Tome 13 (2001) no. 5, pp. 53-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The kinetically consistent finite difference schemes for unstructured triangular meshes have been constructed on the base of MUSCL-approximation of gasdynamic flows which provides a higher accuracy order on space.
@article{MM_2001_13_5_a4,
     author = {I. V. Abalakin and A. V. Zhokhova and B. N. Chetverushkin},
     title = {Kinetically consistent schemes of a~higher accuracy order},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {53--61},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2001_13_5_a4/}
}
TY  - JOUR
AU  - I. V. Abalakin
AU  - A. V. Zhokhova
AU  - B. N. Chetverushkin
TI  - Kinetically consistent schemes of a~higher accuracy order
JO  - Matematičeskoe modelirovanie
PY  - 2001
SP  - 53
EP  - 61
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2001_13_5_a4/
LA  - ru
ID  - MM_2001_13_5_a4
ER  - 
%0 Journal Article
%A I. V. Abalakin
%A A. V. Zhokhova
%A B. N. Chetverushkin
%T Kinetically consistent schemes of a~higher accuracy order
%J Matematičeskoe modelirovanie
%D 2001
%P 53-61
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2001_13_5_a4/
%G ru
%F MM_2001_13_5_a4
I. V. Abalakin; A. V. Zhokhova; B. N. Chetverushkin. Kinetically consistent schemes of a~higher accuracy order. Matematičeskoe modelirovanie, Tome 13 (2001) no. 5, pp. 53-61. http://geodesic.mathdoc.fr/item/MM_2001_13_5_a4/