On convergence of kinetically-consistent difference schemes of gas dynamics
Matematičeskoe modelirovanie, Tome 13 (2001) no. 4, pp. 71-83
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the convergence of kinetically-consistent difference schemes of gas dynamics in Euler variables with sources (sinks) in the case of the ideal gas is investigated. The convergence of difference scheme is proved by means of energetical method. For the class of sufficiently smooth solutions of differential problem it is proved that the solution of the difference problem converges in the mesh norme $L_2$ and that the rate of convergence is $O(h^2)$.
@article{MM_2001_13_4_a5,
author = {T. D. Davitashvili and T. G. Elizarova and F. Criado and G. V. Meladze and N. M. Skhirtladze},
title = {On convergence of kinetically-consistent difference schemes of gas dynamics},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {71--83},
year = {2001},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2001_13_4_a5/}
}
TY - JOUR AU - T. D. Davitashvili AU - T. G. Elizarova AU - F. Criado AU - G. V. Meladze AU - N. M. Skhirtladze TI - On convergence of kinetically-consistent difference schemes of gas dynamics JO - Matematičeskoe modelirovanie PY - 2001 SP - 71 EP - 83 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/MM_2001_13_4_a5/ LA - ru ID - MM_2001_13_4_a5 ER -
%0 Journal Article %A T. D. Davitashvili %A T. G. Elizarova %A F. Criado %A G. V. Meladze %A N. M. Skhirtladze %T On convergence of kinetically-consistent difference schemes of gas dynamics %J Matematičeskoe modelirovanie %D 2001 %P 71-83 %V 13 %N 4 %U http://geodesic.mathdoc.fr/item/MM_2001_13_4_a5/ %G ru %F MM_2001_13_4_a5
T. D. Davitashvili; T. G. Elizarova; F. Criado; G. V. Meladze; N. M. Skhirtladze. On convergence of kinetically-consistent difference schemes of gas dynamics. Matematičeskoe modelirovanie, Tome 13 (2001) no. 4, pp. 71-83. http://geodesic.mathdoc.fr/item/MM_2001_13_4_a5/