Non-stationary iterative method for strongly nonsymmetric linear equation systems
Matematičeskoe modelirovanie, Tome 13 (2001) no. 3, pp. 61-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Convection-diffusion equation in 2-D domain is considered. The non-stationary triangular skew-symmetric iterative method has been used for the solution of strongly nonsymmetric linear equation systems which was risen from the five-point difference approximation. The convergence of this method has been investigated.
@article{MM_2001_13_3_a7,
     author = {T. S. Martynova and O. A. Belokon},
     title = {Non-stationary iterative method for strongly nonsymmetric linear equation systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {61--68},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2001_13_3_a7/}
}
TY  - JOUR
AU  - T. S. Martynova
AU  - O. A. Belokon
TI  - Non-stationary iterative method for strongly nonsymmetric linear equation systems
JO  - Matematičeskoe modelirovanie
PY  - 2001
SP  - 61
EP  - 68
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2001_13_3_a7/
LA  - ru
ID  - MM_2001_13_3_a7
ER  - 
%0 Journal Article
%A T. S. Martynova
%A O. A. Belokon
%T Non-stationary iterative method for strongly nonsymmetric linear equation systems
%J Matematičeskoe modelirovanie
%D 2001
%P 61-68
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2001_13_3_a7/
%G ru
%F MM_2001_13_3_a7
T. S. Martynova; O. A. Belokon. Non-stationary iterative method for strongly nonsymmetric linear equation systems. Matematičeskoe modelirovanie, Tome 13 (2001) no. 3, pp. 61-68. http://geodesic.mathdoc.fr/item/MM_2001_13_3_a7/