Monotone difference schemes for equations with mixed derivative
Matematičeskoe modelirovanie, Tome 13 (2001) no. 2, pp. 17-26
Cet article a éte moissonné depuis la source Math-Net.Ru
There are considered elliptic and parabolic equations of arbitrary dimension with alternating coefficients at mixed derivatives. For such equations monotone difference schemes of the second order of local approximation are constructed. Schemes suggested satisfy the principle of maximum. A priori estimates of stability in the norm $С$ without limitation on the grid steps $\tau$ and $h_\alpha$, $\alpha=l,2,\dots,p$ are obtained (unconditional stability).
@article{MM_2001_13_2_a2,
author = {A. A. Samarskii and V. I. Mazhukin and P. P. Matus and G. I. Shishkin},
title = {Monotone difference schemes for equations with mixed derivative},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {17--26},
year = {2001},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2001_13_2_a2/}
}
TY - JOUR AU - A. A. Samarskii AU - V. I. Mazhukin AU - P. P. Matus AU - G. I. Shishkin TI - Monotone difference schemes for equations with mixed derivative JO - Matematičeskoe modelirovanie PY - 2001 SP - 17 EP - 26 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/MM_2001_13_2_a2/ LA - ru ID - MM_2001_13_2_a2 ER -
A. A. Samarskii; V. I. Mazhukin; P. P. Matus; G. I. Shishkin. Monotone difference schemes for equations with mixed derivative. Matematičeskoe modelirovanie, Tome 13 (2001) no. 2, pp. 17-26. http://geodesic.mathdoc.fr/item/MM_2001_13_2_a2/