Monotone difference schemes for equations with mixed derivative
Matematičeskoe modelirovanie, Tome 13 (2001) no. 2, pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are considered elliptic and parabolic equations of arbitrary dimension with alternating coefficients at mixed derivatives. For such equations monotone difference schemes of the second order of local approximation are constructed. Schemes suggested satisfy the principle of maximum. A priori estimates of stability in the norm $С$ without limitation on the grid steps $\tau$ and $h_\alpha$, $\alpha=l,2,\dots,p$ are obtained (unconditional stability).
@article{MM_2001_13_2_a2,
     author = {A. A. Samarskii and V. I. Mazhukin and P. P. Matus and G. I. Shishkin},
     title = {Monotone difference schemes for equations with mixed derivative},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2001_13_2_a2/}
}
TY  - JOUR
AU  - A. A. Samarskii
AU  - V. I. Mazhukin
AU  - P. P. Matus
AU  - G. I. Shishkin
TI  - Monotone difference schemes for equations with mixed derivative
JO  - Matematičeskoe modelirovanie
PY  - 2001
SP  - 17
EP  - 26
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2001_13_2_a2/
LA  - ru
ID  - MM_2001_13_2_a2
ER  - 
%0 Journal Article
%A A. A. Samarskii
%A V. I. Mazhukin
%A P. P. Matus
%A G. I. Shishkin
%T Monotone difference schemes for equations with mixed derivative
%J Matematičeskoe modelirovanie
%D 2001
%P 17-26
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2001_13_2_a2/
%G ru
%F MM_2001_13_2_a2
A. A. Samarskii; V. I. Mazhukin; P. P. Matus; G. I. Shishkin. Monotone difference schemes for equations with mixed derivative. Matematičeskoe modelirovanie, Tome 13 (2001) no. 2, pp. 17-26. http://geodesic.mathdoc.fr/item/MM_2001_13_2_a2/