Analysis of a~filtration model in porous media
Matematičeskoe modelirovanie, Tome 13 (2001) no. 2, pp. 110-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of wave front solutions to a system of partial differential equations that models the transport and accretion of suspended particles in porous media. The model includes a variable porosity that depends on the volume of immobile particles retained through filtration. We also examine an initial boundary value problem associated with these equations and use singular perturbation to obtain an approximation in the case the particle concentration is small. A local existence theorem of the leading order approximation completes the work.
@article{MM_2001_13_2_a13,
     author = {S. Cohn and G. Ledder and D. Logan},
     title = {Analysis of a~filtration model in porous media},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {110--116},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2001_13_2_a13/}
}
TY  - JOUR
AU  - S. Cohn
AU  - G. Ledder
AU  - D. Logan
TI  - Analysis of a~filtration model in porous media
JO  - Matematičeskoe modelirovanie
PY  - 2001
SP  - 110
EP  - 116
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2001_13_2_a13/
LA  - ru
ID  - MM_2001_13_2_a13
ER  - 
%0 Journal Article
%A S. Cohn
%A G. Ledder
%A D. Logan
%T Analysis of a~filtration model in porous media
%J Matematičeskoe modelirovanie
%D 2001
%P 110-116
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2001_13_2_a13/
%G ru
%F MM_2001_13_2_a13
S. Cohn; G. Ledder; D. Logan. Analysis of a~filtration model in porous media. Matematičeskoe modelirovanie, Tome 13 (2001) no. 2, pp. 110-116. http://geodesic.mathdoc.fr/item/MM_2001_13_2_a13/