Automatic parallelization of loops with 2-dimension arrays for distributed memory supercomputers (matrix multiplication)
Matematičeskoe modelirovanie, Tome 13 (2001) no. 2, pp. 103-109
Cet article a éte moissonné depuis la source Math-Net.Ru
The parallel performance of loops with 2-dimension arrays, particularly matrix multiplication, is considered. The most effective algorithm of matrix multiplication for distributed memory supercomputers that requires data dependence analyses is designed. The method of automatic matrix distribution in a memory of each processor and processor communications are described. The program for matrix multiplication detection and replacing by parallel form is considered. There are some results of parallel program performance on supercomputer nCube 2S in this paper.
@article{MM_2001_13_2_a12,
author = {S. A. Lazareva and N. N. Yachmeneva},
title = {Automatic parallelization of loops with 2-dimension arrays for distributed memory supercomputers (matrix multiplication)},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {103--109},
year = {2001},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2001_13_2_a12/}
}
TY - JOUR AU - S. A. Lazareva AU - N. N. Yachmeneva TI - Automatic parallelization of loops with 2-dimension arrays for distributed memory supercomputers (matrix multiplication) JO - Matematičeskoe modelirovanie PY - 2001 SP - 103 EP - 109 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/MM_2001_13_2_a12/ LA - ru ID - MM_2001_13_2_a12 ER -
%0 Journal Article %A S. A. Lazareva %A N. N. Yachmeneva %T Automatic parallelization of loops with 2-dimension arrays for distributed memory supercomputers (matrix multiplication) %J Matematičeskoe modelirovanie %D 2001 %P 103-109 %V 13 %N 2 %U http://geodesic.mathdoc.fr/item/MM_2001_13_2_a12/ %G ru %F MM_2001_13_2_a12
S. A. Lazareva; N. N. Yachmeneva. Automatic parallelization of loops with 2-dimension arrays for distributed memory supercomputers (matrix multiplication). Matematičeskoe modelirovanie, Tome 13 (2001) no. 2, pp. 103-109. http://geodesic.mathdoc.fr/item/MM_2001_13_2_a12/