Some free-boundary problems in deformable porous media
Matematičeskoe modelirovanie, Tome 13 (2001) no. 2, pp. 99-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

For nonlinear viscous and viscoplastic porous media with free-boundary surface, a mathematical model is proposed. The free-boundary surface is a priory unknown surface, which separates the parts of the porous body with a different properties. Typical examples of free-boundary are the phase interface, which separates the phases of material, in the theory of phase transformations and the surface between saturated and unsaturated parts of a porous body. The variational set up of problen is given that allow us to consider discontinuous solution of the problem. The boundary conditions on the unknown surface are obtained by using this variational formulation These conditions are required to determine the free-boundary surface. The results obtained in the paper can be used to model transport phenomena in saturated soils.
@article{MM_2001_13_2_a11,
     author = {V. A. Eremeyev},
     title = {Some free-boundary problems in deformable porous media},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--102},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2001_13_2_a11/}
}
TY  - JOUR
AU  - V. A. Eremeyev
TI  - Some free-boundary problems in deformable porous media
JO  - Matematičeskoe modelirovanie
PY  - 2001
SP  - 99
EP  - 102
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2001_13_2_a11/
LA  - ru
ID  - MM_2001_13_2_a11
ER  - 
%0 Journal Article
%A V. A. Eremeyev
%T Some free-boundary problems in deformable porous media
%J Matematičeskoe modelirovanie
%D 2001
%P 99-102
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2001_13_2_a11/
%G ru
%F MM_2001_13_2_a11
V. A. Eremeyev. Some free-boundary problems in deformable porous media. Matematičeskoe modelirovanie, Tome 13 (2001) no. 2, pp. 99-102. http://geodesic.mathdoc.fr/item/MM_2001_13_2_a11/