On accuracy of the quasi-one-dimensional model of smooth wall channel
Matematičeskoe modelirovanie, Tome 13 (2001) no. 10, pp. 120-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quasi-one-dimensional model describing viscous gas-dynamic flow through smooth channels of a variable cross section is represented here. This model has many advantages both in accuracy, and in completeness of the description of processes. Being mathematically one-dimensional, this model allows taking into account viscous friction with the channels wall, chemical reactions, additional injection and other physical-chemical processes. Besides this model takes into account a curvature of channels wall and it is suitable for great inclination angles.
@article{MM_2001_13_10_a8,
     author = {E. A. Alshina and N. N. Kalitkin and B. V. Rogov and I. A. Sokolova},
     title = {On accuracy of the quasi-one-dimensional model of smooth wall channel},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {120--124},
     publisher = {mathdoc},
     volume = {13},
     number = {10},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2001_13_10_a8/}
}
TY  - JOUR
AU  - E. A. Alshina
AU  - N. N. Kalitkin
AU  - B. V. Rogov
AU  - I. A. Sokolova
TI  - On accuracy of the quasi-one-dimensional model of smooth wall channel
JO  - Matematičeskoe modelirovanie
PY  - 2001
SP  - 120
EP  - 124
VL  - 13
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2001_13_10_a8/
LA  - ru
ID  - MM_2001_13_10_a8
ER  - 
%0 Journal Article
%A E. A. Alshina
%A N. N. Kalitkin
%A B. V. Rogov
%A I. A. Sokolova
%T On accuracy of the quasi-one-dimensional model of smooth wall channel
%J Matematičeskoe modelirovanie
%D 2001
%P 120-124
%V 13
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2001_13_10_a8/
%G ru
%F MM_2001_13_10_a8
E. A. Alshina; N. N. Kalitkin; B. V. Rogov; I. A. Sokolova. On accuracy of the quasi-one-dimensional model of smooth wall channel. Matematičeskoe modelirovanie, Tome 13 (2001) no. 10, pp. 120-124. http://geodesic.mathdoc.fr/item/MM_2001_13_10_a8/