Additive difference schemes for filtration problems in multilayer systems
Matematičeskoe modelirovanie, Tome 13 (2001) no. 10, pp. 91-102
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper difference schemes for solution of the plane filtration problem in multilayer systems are analyzed within the framework of difference schemes general theory. Attention is paid to splitting the schemes on physical processes of filtration along water-carrying layers and vertical motion between layers. Some absolutely stable additive difference schemes are obtained the realization of which needs no software modification. Parallel algorithm connected with the solving of the nitration problem in every watercarrying layer on a single processor is constructed. Program realization on the multiprocessor system SPP-2000 at JINR is discussed.
@article{MM_2001_13_10_a6,
author = {E. A. Hayryan and P. N. Vabishchevich and M. Pavlus and A. V. Fedorov},
title = {Additive difference schemes for filtration problems in multilayer systems},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {91--102},
year = {2001},
volume = {13},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2001_13_10_a6/}
}
TY - JOUR AU - E. A. Hayryan AU - P. N. Vabishchevich AU - M. Pavlus AU - A. V. Fedorov TI - Additive difference schemes for filtration problems in multilayer systems JO - Matematičeskoe modelirovanie PY - 2001 SP - 91 EP - 102 VL - 13 IS - 10 UR - http://geodesic.mathdoc.fr/item/MM_2001_13_10_a6/ LA - ru ID - MM_2001_13_10_a6 ER -
%0 Journal Article %A E. A. Hayryan %A P. N. Vabishchevich %A M. Pavlus %A A. V. Fedorov %T Additive difference schemes for filtration problems in multilayer systems %J Matematičeskoe modelirovanie %D 2001 %P 91-102 %V 13 %N 10 %U http://geodesic.mathdoc.fr/item/MM_2001_13_10_a6/ %G ru %F MM_2001_13_10_a6
E. A. Hayryan; P. N. Vabishchevich; M. Pavlus; A. V. Fedorov. Additive difference schemes for filtration problems in multilayer systems. Matematičeskoe modelirovanie, Tome 13 (2001) no. 10, pp. 91-102. http://geodesic.mathdoc.fr/item/MM_2001_13_10_a6/