The numerical solution of polymer mechanics boundary-value problems under relaxation and phase transition
Matematičeskoe modelirovanie, Tome 12 (2000) no. 7, pp. 45-50
Cet article a éte moissonné depuis la source Math-Net.Ru
The mathematical model is considered describing generation and evolution of strain and stress fields over a wide range of temperature variations, including crystallization and glass transition. The formulation of quasistatic boundary-value problem includes new kinetic equations and physical relations that describe thermomechanical effects under relaxation and phase transition with high accuracy. For solving of the system of integral-differential equations the numerical stepped finite-element procedure is used. As example, the solution results are shown for problems of residual stress determination in glassy short cylinder and crystallizing pipe.
@article{MM_2000_12_7_a8,
author = {N. A. Trufanov and O. Yu. Smetannikov and T. G. Savjalova},
title = {The numerical solution of polymer mechanics boundary-value problems under relaxation and phase transition},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {45--50},
year = {2000},
volume = {12},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2000_12_7_a8/}
}
TY - JOUR AU - N. A. Trufanov AU - O. Yu. Smetannikov AU - T. G. Savjalova TI - The numerical solution of polymer mechanics boundary-value problems under relaxation and phase transition JO - Matematičeskoe modelirovanie PY - 2000 SP - 45 EP - 50 VL - 12 IS - 7 UR - http://geodesic.mathdoc.fr/item/MM_2000_12_7_a8/ LA - ru ID - MM_2000_12_7_a8 ER -
%0 Journal Article %A N. A. Trufanov %A O. Yu. Smetannikov %A T. G. Savjalova %T The numerical solution of polymer mechanics boundary-value problems under relaxation and phase transition %J Matematičeskoe modelirovanie %D 2000 %P 45-50 %V 12 %N 7 %U http://geodesic.mathdoc.fr/item/MM_2000_12_7_a8/ %G ru %F MM_2000_12_7_a8
N. A. Trufanov; O. Yu. Smetannikov; T. G. Savjalova. The numerical solution of polymer mechanics boundary-value problems under relaxation and phase transition. Matematičeskoe modelirovanie, Tome 12 (2000) no. 7, pp. 45-50. http://geodesic.mathdoc.fr/item/MM_2000_12_7_a8/