Multicomponent iterative alternating direction methods
Matematičeskoe modelirovanie, Tome 12 (2000) no. 2, pp. 45-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Possibility of the noncommutative multicomponent splitting-up methods is considered for solving of stationary problems of mathematical physics. Additive multicomponent iterative methods are suggested. Its convergence is investigated.
@article{MM_2000_12_2_a6,
     author = {V. N. Abrashin},
     title = {Multicomponent iterative alternating direction methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {45--58},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2000_12_2_a6/}
}
TY  - JOUR
AU  - V. N. Abrashin
TI  - Multicomponent iterative alternating direction methods
JO  - Matematičeskoe modelirovanie
PY  - 2000
SP  - 45
EP  - 58
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2000_12_2_a6/
LA  - ru
ID  - MM_2000_12_2_a6
ER  - 
%0 Journal Article
%A V. N. Abrashin
%T Multicomponent iterative alternating direction methods
%J Matematičeskoe modelirovanie
%D 2000
%P 45-58
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2000_12_2_a6/
%G ru
%F MM_2000_12_2_a6
V. N. Abrashin. Multicomponent iterative alternating direction methods. Matematičeskoe modelirovanie, Tome 12 (2000) no. 2, pp. 45-58. http://geodesic.mathdoc.fr/item/MM_2000_12_2_a6/