On a model of auto oscillating system with distributed parameters
Matematičeskoe modelirovanie, Tome 12 (2000) no. 12, pp. 3-10
Cet article a éte moissonné depuis la source Math-Net.Ru
The subject of the information is a self-excited oscillator with LCR-distributed parameters the feedback circuit, which inductively interacts with a segment of a long line. Having achieved tight binding between the oscillator and the segment of a line a mathematical model of the system under consideration was built. Using special variant of the Krilov–Bogolubov–Mitropolski method calculation of oscillation parameters was performed. It is demonstrated that introduction of property “adjusted” auxiliary line leads to negative feedback (degeneration) of mono cyclicity in the base-model oscillator and bifurcation of stable, close to harmonic motion auto oscillation on the fundamental frequency of self-excitation. Theoretical conclusions are supported by experiments.
@article{MM_2000_12_12_a0,
author = {V. F. Kambulov and S. A. Tarasov and N. B. Fedorov and A. N. Chikin},
title = {On a~model of auto oscillating system with distributed parameters},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {3--10},
year = {2000},
volume = {12},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2000_12_12_a0/}
}
TY - JOUR AU - V. F. Kambulov AU - S. A. Tarasov AU - N. B. Fedorov AU - A. N. Chikin TI - On a model of auto oscillating system with distributed parameters JO - Matematičeskoe modelirovanie PY - 2000 SP - 3 EP - 10 VL - 12 IS - 12 UR - http://geodesic.mathdoc.fr/item/MM_2000_12_12_a0/ LA - ru ID - MM_2000_12_12_a0 ER -
V. F. Kambulov; S. A. Tarasov; N. B. Fedorov; A. N. Chikin. On a model of auto oscillating system with distributed parameters. Matematičeskoe modelirovanie, Tome 12 (2000) no. 12, pp. 3-10. http://geodesic.mathdoc.fr/item/MM_2000_12_12_a0/