Difference scheme of the second order of accuracy for dirichlet problem in arbitrary area
Matematičeskoe modelirovanie, Tome 11 (1999) no. 9, pp. 71-82
Cet article a éte moissonné depuis la source Math-Net.Ru
Difference schemes for two-dimensional Poisson equation in arbitrary domain on standard templates are considered. Tbese schemes also have the second order of local approximation in the nodes near the boundary. The monotonicity of these schemes are proved for a wide class of areas by means of a principle of maximum. Stability of the schemes is proved in the grid norm $W_2^1$ in arbitrary computational domain by the method of energy inequalities.
@article{MM_1999_11_9_a5,
author = {A. A. Samarskii and P. N. Vabishchevich and A. N. Zyl and P. P. Matus},
title = {Difference scheme of the second order of accuracy for dirichlet problem in arbitrary area},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {71--82},
year = {1999},
volume = {11},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1999_11_9_a5/}
}
TY - JOUR AU - A. A. Samarskii AU - P. N. Vabishchevich AU - A. N. Zyl AU - P. P. Matus TI - Difference scheme of the second order of accuracy for dirichlet problem in arbitrary area JO - Matematičeskoe modelirovanie PY - 1999 SP - 71 EP - 82 VL - 11 IS - 9 UR - http://geodesic.mathdoc.fr/item/MM_1999_11_9_a5/ LA - ru ID - MM_1999_11_9_a5 ER -
%0 Journal Article %A A. A. Samarskii %A P. N. Vabishchevich %A A. N. Zyl %A P. P. Matus %T Difference scheme of the second order of accuracy for dirichlet problem in arbitrary area %J Matematičeskoe modelirovanie %D 1999 %P 71-82 %V 11 %N 9 %U http://geodesic.mathdoc.fr/item/MM_1999_11_9_a5/ %G ru %F MM_1999_11_9_a5
A. A. Samarskii; P. N. Vabishchevich; A. N. Zyl; P. P. Matus. Difference scheme of the second order of accuracy for dirichlet problem in arbitrary area. Matematičeskoe modelirovanie, Tome 11 (1999) no. 9, pp. 71-82. http://geodesic.mathdoc.fr/item/MM_1999_11_9_a5/