Symmetrizatton of global splines
Matematičeskoe modelirovanie, Tome 11 (1999) no. 8, pp. 116-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Symmetric forms are investigated for polynoms and global splines. They are shown to be essentially perspective than non-symmetric forms for least square problems. Algorithms for approximation coefficients finding occur equally simple but much more stable at round off errors. It permits to achieve better approximation accuracy.
@article{MM_1999_11_8_a9,
     author = {N. N. Kalitkin and N. M. Shlyakhov},
     title = {Symmetrizatton of global splines},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {116--126},
     publisher = {mathdoc},
     volume = {11},
     number = {8},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1999_11_8_a9/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - N. M. Shlyakhov
TI  - Symmetrizatton of global splines
JO  - Matematičeskoe modelirovanie
PY  - 1999
SP  - 116
EP  - 126
VL  - 11
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1999_11_8_a9/
LA  - ru
ID  - MM_1999_11_8_a9
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A N. M. Shlyakhov
%T Symmetrizatton of global splines
%J Matematičeskoe modelirovanie
%D 1999
%P 116-126
%V 11
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1999_11_8_a9/
%G ru
%F MM_1999_11_8_a9
N. N. Kalitkin; N. M. Shlyakhov. Symmetrizatton of global splines. Matematičeskoe modelirovanie, Tome 11 (1999) no. 8, pp. 116-126. http://geodesic.mathdoc.fr/item/MM_1999_11_8_a9/