Research the solutions of the ordinary differential equations systems, for homogeneous cristallization model
Matematičeskoe modelirovanie, Tome 11 (1999) no. 3, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of the eigen values evaluation of matrixes for systems of the homogeneous linear differential equations is developed. These systems arise in macrokinetical models of homogeneous phase transitions. The behaviour of a solution of these systems is investigated by the developed method. Is was shown, that the behaviour of a solution qualitatively depends on a ratio of a size of a critical germ to dimension of a system.
@article{MM_1999_11_3_a0,
     author = {O. O. Borodin and V. A. Volkov and A. V. Muslaev and Yu. A. Shebeko},
     title = {Research the solutions of the ordinary differential equations systems, for homogeneous cristallization model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1999_11_3_a0/}
}
TY  - JOUR
AU  - O. O. Borodin
AU  - V. A. Volkov
AU  - A. V. Muslaev
AU  - Yu. A. Shebeko
TI  - Research the solutions of the ordinary differential equations systems, for homogeneous cristallization model
JO  - Matematičeskoe modelirovanie
PY  - 1999
SP  - 3
EP  - 12
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1999_11_3_a0/
LA  - ru
ID  - MM_1999_11_3_a0
ER  - 
%0 Journal Article
%A O. O. Borodin
%A V. A. Volkov
%A A. V. Muslaev
%A Yu. A. Shebeko
%T Research the solutions of the ordinary differential equations systems, for homogeneous cristallization model
%J Matematičeskoe modelirovanie
%D 1999
%P 3-12
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1999_11_3_a0/
%G ru
%F MM_1999_11_3_a0
O. O. Borodin; V. A. Volkov; A. V. Muslaev; Yu. A. Shebeko. Research the solutions of the ordinary differential equations systems, for homogeneous cristallization model. Matematičeskoe modelirovanie, Tome 11 (1999) no. 3, pp. 3-12. http://geodesic.mathdoc.fr/item/MM_1999_11_3_a0/