Research the solutions of the ordinary differential equations systems, for homogeneous cristallization model
Matematičeskoe modelirovanie, Tome 11 (1999) no. 3, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of the eigen values evaluation of matrixes for systems of the homogeneous linear differential equations is developed. These systems arise in macrokinetical models of homogeneous phase transitions. The behaviour of a solution of these systems is investigated by the developed method. Is was shown, that the behaviour of a solution qualitatively depends on a ratio of a size of a critical germ to dimension of a system.
@article{MM_1999_11_3_a0,
     author = {O. O. Borodin and V. A. Volkov and A. V. Muslaev and Yu. A. Shebeko},
     title = {Research the solutions of the ordinary differential equations systems, for homogeneous cristallization model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--12},
     year = {1999},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1999_11_3_a0/}
}
TY  - JOUR
AU  - O. O. Borodin
AU  - V. A. Volkov
AU  - A. V. Muslaev
AU  - Yu. A. Shebeko
TI  - Research the solutions of the ordinary differential equations systems, for homogeneous cristallization model
JO  - Matematičeskoe modelirovanie
PY  - 1999
SP  - 3
EP  - 12
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MM_1999_11_3_a0/
LA  - ru
ID  - MM_1999_11_3_a0
ER  - 
%0 Journal Article
%A O. O. Borodin
%A V. A. Volkov
%A A. V. Muslaev
%A Yu. A. Shebeko
%T Research the solutions of the ordinary differential equations systems, for homogeneous cristallization model
%J Matematičeskoe modelirovanie
%D 1999
%P 3-12
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/MM_1999_11_3_a0/
%G ru
%F MM_1999_11_3_a0
O. O. Borodin; V. A. Volkov; A. V. Muslaev; Yu. A. Shebeko. Research the solutions of the ordinary differential equations systems, for homogeneous cristallization model. Matematičeskoe modelirovanie, Tome 11 (1999) no. 3, pp. 3-12. http://geodesic.mathdoc.fr/item/MM_1999_11_3_a0/