Grid approximation of singularly perturbed boundary value problems on locally refined meshes. Reaction-diffusion equations
Matematičeskoe modelirovanie, Tome 11 (1999) no. 12, pp. 87-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Dirichlet problem for a parabolic reaction-diffusion equation is considered on a segment. The highest derivative of the equation is multiplied by a parameter $\varepsilon$ taking arbitrary values in the half-interval (0,1]. For this problem we study classical difference approximations on sequentially locally refined (a priori or a posteriori) meshes. The correction of the grid solutions in the difference schemes is performed only on the subdomains subjected to refinement (the boundaries of these subdomains pass through the grid nodes); uniform meshes are used on the adaptation subdomains. As was shown, in this class of the finite diference schemes there exists no scheme that converges uniformly in the parameter $\varepsilon$ (or $\varepsilon$-uniformly). We construct special schemes, which allow us to obtain the approximations that converge " almost $\varepsilon$-uniformly", i.e., with an error weakly depending on $\varepsilon$:$|u(x,t)-z(x,t)\leq M[\varepsilon^{-2\nu}N_1^{-2+2\mu}+n_0^{-1}]$, $(x,t)\in\overline G_h$ , where $\nu$$\mu$ are arbitrary numbers from (0,1]; $N_1+1$ and $N_0+1$ are the numbers of the mesh nodes in $x$ and $t$, $M=M(\nu,\mu)$.
@article{MM_1999_11_12_a8,
     author = {G. I. Shishkin},
     title = {Grid approximation of singularly perturbed boundary value problems on locally refined meshes. {Reaction-diffusion} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {87--104},
     publisher = {mathdoc},
     volume = {11},
     number = {12},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1999_11_12_a8/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Grid approximation of singularly perturbed boundary value problems on locally refined meshes. Reaction-diffusion equations
JO  - Matematičeskoe modelirovanie
PY  - 1999
SP  - 87
EP  - 104
VL  - 11
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1999_11_12_a8/
LA  - ru
ID  - MM_1999_11_12_a8
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Grid approximation of singularly perturbed boundary value problems on locally refined meshes. Reaction-diffusion equations
%J Matematičeskoe modelirovanie
%D 1999
%P 87-104
%V 11
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1999_11_12_a8/
%G ru
%F MM_1999_11_12_a8
G. I. Shishkin. Grid approximation of singularly perturbed boundary value problems on locally refined meshes. Reaction-diffusion equations. Matematičeskoe modelirovanie, Tome 11 (1999) no. 12, pp. 87-104. http://geodesic.mathdoc.fr/item/MM_1999_11_12_a8/