Subsonic jet flows with free boundaries
Matematičeskoe modelirovanie, Tome 11 (1999) no. 12, pp. 16-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

A vortex flow of nonviscous incompressible fluid arising from jet impingement on a rigid surface is considered. Finite difference method and boundary element method on the basis of curvilinear grid structures are used for numerical solution of model equations. The basic equations are written for the variables stream function – vorticity. The optimisation procedures for determination of free surface jet are developed. Numerical simulation of plane and round jet interaction with various shape obstacles for flow of different initial vorticity is established. Velocity and pressure distributions on the obstacle surface are obtained. The computed flow pattern has sufficiently good agreement with the experimental data, theory circumscribing vortex flow in the vicinity of stagnation point and available numerical solutions.
@article{MM_1999_11_12_a1,
     author = {V. A. Anisimov and K. N. Volkov and V. N. Emelyanov},
     title = {Subsonic jet flows with free boundaries},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {16--32},
     publisher = {mathdoc},
     volume = {11},
     number = {12},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1999_11_12_a1/}
}
TY  - JOUR
AU  - V. A. Anisimov
AU  - K. N. Volkov
AU  - V. N. Emelyanov
TI  - Subsonic jet flows with free boundaries
JO  - Matematičeskoe modelirovanie
PY  - 1999
SP  - 16
EP  - 32
VL  - 11
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1999_11_12_a1/
LA  - ru
ID  - MM_1999_11_12_a1
ER  - 
%0 Journal Article
%A V. A. Anisimov
%A K. N. Volkov
%A V. N. Emelyanov
%T Subsonic jet flows with free boundaries
%J Matematičeskoe modelirovanie
%D 1999
%P 16-32
%V 11
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1999_11_12_a1/
%G ru
%F MM_1999_11_12_a1
V. A. Anisimov; K. N. Volkov; V. N. Emelyanov. Subsonic jet flows with free boundaries. Matematičeskoe modelirovanie, Tome 11 (1999) no. 12, pp. 16-32. http://geodesic.mathdoc.fr/item/MM_1999_11_12_a1/