$B$-splines of high powers
Matematičeskoe modelirovanie, Tome 11 (1999) no. 11, pp. 64-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The simple explicite expression was deduced for $B$-splines of arbitrary power on non-equidistant grid. The scalar productions of these splines were found up to the 7th power for equidistant grid. The algorithm of least square approximation of functions by such splines was developed. The universal test was proposed for checking different classes of algorithms. Numerical calculations on this test showed the algorithm was well posed and provided a high accuracy.
@article{MM_1999_11_11_a4,
     author = {N. N. Kalitkin and N. M. Shlyakhov},
     title = {$B$-splines of high powers},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {64--74},
     publisher = {mathdoc},
     volume = {11},
     number = {11},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1999_11_11_a4/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - N. M. Shlyakhov
TI  - $B$-splines of high powers
JO  - Matematičeskoe modelirovanie
PY  - 1999
SP  - 64
EP  - 74
VL  - 11
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1999_11_11_a4/
LA  - ru
ID  - MM_1999_11_11_a4
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A N. M. Shlyakhov
%T $B$-splines of high powers
%J Matematičeskoe modelirovanie
%D 1999
%P 64-74
%V 11
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1999_11_11_a4/
%G ru
%F MM_1999_11_11_a4
N. N. Kalitkin; N. M. Shlyakhov. $B$-splines of high powers. Matematičeskoe modelirovanie, Tome 11 (1999) no. 11, pp. 64-74. http://geodesic.mathdoc.fr/item/MM_1999_11_11_a4/