Coefficient stability of differential-operator equations and operator-difference schemes
Matematičeskoe modelirovanie, Tome 10 (1998) no. 8, pp. 103-113
Cet article a éte moissonné depuis la source Math-Net.Ru
Estimates of stability with perturbed operator of Cauchy problem, right side and initial condition for evolutionary equations in Hilbert spaces have been obtained. A priori estimates of strong stability for two-layered operator-difference schemes are brought. Such estimates are consistent with corespondent ones for differential-operator equation.
@article{MM_1998_10_8_a8,
author = {A. A. Samarskii and P. N. Vabishchevich and P. P. Matus},
title = {Coefficient stability of differential-operator equations and operator-difference schemes},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {103--113},
year = {1998},
volume = {10},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1998_10_8_a8/}
}
TY - JOUR AU - A. A. Samarskii AU - P. N. Vabishchevich AU - P. P. Matus TI - Coefficient stability of differential-operator equations and operator-difference schemes JO - Matematičeskoe modelirovanie PY - 1998 SP - 103 EP - 113 VL - 10 IS - 8 UR - http://geodesic.mathdoc.fr/item/MM_1998_10_8_a8/ LA - ru ID - MM_1998_10_8_a8 ER -
%0 Journal Article %A A. A. Samarskii %A P. N. Vabishchevich %A P. P. Matus %T Coefficient stability of differential-operator equations and operator-difference schemes %J Matematičeskoe modelirovanie %D 1998 %P 103-113 %V 10 %N 8 %U http://geodesic.mathdoc.fr/item/MM_1998_10_8_a8/ %G ru %F MM_1998_10_8_a8
A. A. Samarskii; P. N. Vabishchevich; P. P. Matus. Coefficient stability of differential-operator equations and operator-difference schemes. Matematičeskoe modelirovanie, Tome 10 (1998) no. 8, pp. 103-113. http://geodesic.mathdoc.fr/item/MM_1998_10_8_a8/