Coefficient stability of differential-operator equations and operator-difference schemes
Matematičeskoe modelirovanie, Tome 10 (1998) no. 8, pp. 103-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates of stability with perturbed operator of Cauchy problem, right side and initial condition for evolutionary equations in Hilbert spaces have been obtained. A priori estimates of strong stability for two-layered operator-difference schemes are brought. Such estimates are consistent with corespondent ones for differential-operator equation.
@article{MM_1998_10_8_a8,
     author = {A. A. Samarskii and P. N. Vabishchevich and P. P. Matus},
     title = {Coefficient stability of differential-operator equations and operator-difference schemes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--113},
     publisher = {mathdoc},
     volume = {10},
     number = {8},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1998_10_8_a8/}
}
TY  - JOUR
AU  - A. A. Samarskii
AU  - P. N. Vabishchevich
AU  - P. P. Matus
TI  - Coefficient stability of differential-operator equations and operator-difference schemes
JO  - Matematičeskoe modelirovanie
PY  - 1998
SP  - 103
EP  - 113
VL  - 10
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1998_10_8_a8/
LA  - ru
ID  - MM_1998_10_8_a8
ER  - 
%0 Journal Article
%A A. A. Samarskii
%A P. N. Vabishchevich
%A P. P. Matus
%T Coefficient stability of differential-operator equations and operator-difference schemes
%J Matematičeskoe modelirovanie
%D 1998
%P 103-113
%V 10
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1998_10_8_a8/
%G ru
%F MM_1998_10_8_a8
A. A. Samarskii; P. N. Vabishchevich; P. P. Matus. Coefficient stability of differential-operator equations and operator-difference schemes. Matematičeskoe modelirovanie, Tome 10 (1998) no. 8, pp. 103-113. http://geodesic.mathdoc.fr/item/MM_1998_10_8_a8/