Tishkiru Rotation invariance of parametric spline approximation
Matematičeskoe modelirovanie, Tome 10 (1998) no. 4, pp. 83-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximation of plane and space curves with parametric splines was investigated. It was prooved that natural or periodic interpolative spline gave rotationally invariant approximation. Least square splines under some restrictions had the same property. But splines with non-periodic boundary conditions often lead to approximation non-invariant rotationally. The algorithm was developed for curve's length choice as a parameter.
@article{MM_1998_10_4_a8,
     author = {N. N. Kalitkin and L. V. Kuzmina and E. V. Maevskii and V. F. Tishkin},
     title = {Tishkiru {Rotation} invariance of parametric spline approximation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--90},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1998_10_4_a8/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - L. V. Kuzmina
AU  - E. V. Maevskii
AU  - V. F. Tishkin
TI  - Tishkiru Rotation invariance of parametric spline approximation
JO  - Matematičeskoe modelirovanie
PY  - 1998
SP  - 83
EP  - 90
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1998_10_4_a8/
LA  - ru
ID  - MM_1998_10_4_a8
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A L. V. Kuzmina
%A E. V. Maevskii
%A V. F. Tishkin
%T Tishkiru Rotation invariance of parametric spline approximation
%J Matematičeskoe modelirovanie
%D 1998
%P 83-90
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1998_10_4_a8/
%G ru
%F MM_1998_10_4_a8
N. N. Kalitkin; L. V. Kuzmina; E. V. Maevskii; V. F. Tishkin. Tishkiru Rotation invariance of parametric spline approximation. Matematičeskoe modelirovanie, Tome 10 (1998) no. 4, pp. 83-90. http://geodesic.mathdoc.fr/item/MM_1998_10_4_a8/