Tishkiru Rotation invariance of parametric spline approximation
Matematičeskoe modelirovanie, Tome 10 (1998) no. 4, pp. 83-90
Cet article a éte moissonné depuis la source Math-Net.Ru
Approximation of plane and space curves with parametric splines was investigated. It was prooved that natural or periodic interpolative spline gave rotationally invariant approximation. Least square splines under some restrictions had the same property. But splines with non-periodic boundary conditions often lead to approximation non-invariant rotationally. The algorithm was developed for curve's length choice as a parameter.
@article{MM_1998_10_4_a8,
author = {N. N. Kalitkin and L. V. Kuzmina and E. V. Maevskii and V. F. Tishkin},
title = {Tishkiru {Rotation} invariance of parametric spline approximation},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {83--90},
year = {1998},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1998_10_4_a8/}
}
TY - JOUR AU - N. N. Kalitkin AU - L. V. Kuzmina AU - E. V. Maevskii AU - V. F. Tishkin TI - Tishkiru Rotation invariance of parametric spline approximation JO - Matematičeskoe modelirovanie PY - 1998 SP - 83 EP - 90 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/MM_1998_10_4_a8/ LA - ru ID - MM_1998_10_4_a8 ER -
N. N. Kalitkin; L. V. Kuzmina; E. V. Maevskii; V. F. Tishkin. Tishkiru Rotation invariance of parametric spline approximation. Matematičeskoe modelirovanie, Tome 10 (1998) no. 4, pp. 83-90. http://geodesic.mathdoc.fr/item/MM_1998_10_4_a8/