Second-order learning methods for a multilayer perceptron
Matematičeskoe modelirovanie, Tome 10 (1998) no. 3, pp. 117-124
Cet article a éte moissonné depuis la source Math-Net.Ru
First-and second-order learning methods for feed-forward multilayer networks are studied. Newtontype and quasi-Newton algorithms are considered and compared with commonly used backpropagation algorithm. It is shown that, although second-order algorithms reguire enhanced computer facilities, they provide better convergence and simplicity in usage.
@article{MM_1998_10_3_a8,
author = {V. V. Ivanov and B. Purevdorj and I. V. Puzynin},
title = {Second-order learning methods for a~multilayer perceptron},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {117--124},
year = {1998},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1998_10_3_a8/}
}
V. V. Ivanov; B. Purevdorj; I. V. Puzynin. Second-order learning methods for a multilayer perceptron. Matematičeskoe modelirovanie, Tome 10 (1998) no. 3, pp. 117-124. http://geodesic.mathdoc.fr/item/MM_1998_10_3_a8/