Second-order learning methods for a~multilayer perceptron
Matematičeskoe modelirovanie, Tome 10 (1998) no. 3, pp. 117-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

First-and second-order learning methods for feed-forward multilayer networks are studied. Newtontype and quasi-Newton algorithms are considered and compared with commonly used backpropagation algorithm. It is shown that, although second-order algorithms reguire enhanced computer facilities, they provide better convergence and simplicity in usage.
@article{MM_1998_10_3_a8,
     author = {V. V. Ivanov and B. Purevdorj and I. V. Puzynin},
     title = {Second-order learning methods for a~multilayer perceptron},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {117--124},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1998_10_3_a8/}
}
TY  - JOUR
AU  - V. V. Ivanov
AU  - B. Purevdorj
AU  - I. V. Puzynin
TI  - Second-order learning methods for a~multilayer perceptron
JO  - Matematičeskoe modelirovanie
PY  - 1998
SP  - 117
EP  - 124
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1998_10_3_a8/
LA  - ru
ID  - MM_1998_10_3_a8
ER  - 
%0 Journal Article
%A V. V. Ivanov
%A B. Purevdorj
%A I. V. Puzynin
%T Second-order learning methods for a~multilayer perceptron
%J Matematičeskoe modelirovanie
%D 1998
%P 117-124
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1998_10_3_a8/
%G ru
%F MM_1998_10_3_a8
V. V. Ivanov; B. Purevdorj; I. V. Puzynin. Second-order learning methods for a~multilayer perceptron. Matematičeskoe modelirovanie, Tome 10 (1998) no. 3, pp. 117-124. http://geodesic.mathdoc.fr/item/MM_1998_10_3_a8/