The method of constructing of block-triangular difference schemes for selfadjoint form of the transport equation
Matematičeskoe modelirovanie, Tome 10 (1998) no. 1, pp. 117-125
Cet article a éte moissonné depuis la source Math-Net.Ru
The method is proposed for construction of difference schemes for the 2nd order linear transport equation: \[ M\varphi(\vec{r},\vec{\Omega})\equiv\operatorname{div}[ \vec\Omega\frac1{\sigma(\vec{r})}(-\vec\Omega\nabla\varphi +\frac1{4\pi}Q(\vec{r},\vec{\Omega}))] +\sigma(\vec{r})\cdot\varphi=\frac1{4\pi}Q(\vec{r},\vec{\Omega})\tag{1} \] under the assumption that $Q(\vec{r},\vec{\Omega})$ is a given function (simple iteration). Equation (1) is one among selfadjoint forms equivalent to the transport equation of the 1st order: \[ L\varphi(\vec{r},\vec{\Omega})\equiv\vec{\Omega}\cdot\nabla\varphi +\sigma(\vec{r})\cdot\varphi=\frac1{4\pi}Q(\vec{r},\vec{\Omega}). \tag{2} \] The problem of the equation (1) is stated in a convex body $G$ and is a boundary problem in contrast to the equation (2), for which Cauchy problem is stated. The novelty of the method is that some properties of the problem (1) are indicated, and these properties make it possible to build finitedifference and finite-elements schemes with block-triangular matrices for boundary value for the system of discrete equations.
@article{MM_1998_10_1_a10,
author = {V. E. Troshchiev},
title = {The method of constructing of block-triangular difference schemes for selfadjoint form of the transport equation},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {117--125},
year = {1998},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1998_10_1_a10/}
}
TY - JOUR AU - V. E. Troshchiev TI - The method of constructing of block-triangular difference schemes for selfadjoint form of the transport equation JO - Matematičeskoe modelirovanie PY - 1998 SP - 117 EP - 125 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/MM_1998_10_1_a10/ LA - ru ID - MM_1998_10_1_a10 ER -
V. E. Troshchiev. The method of constructing of block-triangular difference schemes for selfadjoint form of the transport equation. Matematičeskoe modelirovanie, Tome 10 (1998) no. 1, pp. 117-125. http://geodesic.mathdoc.fr/item/MM_1998_10_1_a10/