Gas dynamic boundary conditions for evaporation processes
Matematičeskoe modelirovanie, Tome 10 (1998) no. 11, pp. 112-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of exact mathematical theory, the gas-dynamic description in closed form for slow flows at moderately strong heterogeneous processes of evaporation-condensation was obtained.The theory is based upon strict representation of Kramer's boundary kinetic problem and linearized collision integral. The task of finding of the coefficients in boundary condition is reduced to solving a set of integral equations with slight singularity in semi-infinity area. The numerical solution of this problem is obtained on the basis of quadrature procedure.
@article{MM_1998_10_11_a9,
     author = {D. B. Moskvin and V. A. Pavlov},
     title = {Gas dynamic boundary conditions for evaporation processes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {112--122},
     publisher = {mathdoc},
     volume = {10},
     number = {11},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1998_10_11_a9/}
}
TY  - JOUR
AU  - D. B. Moskvin
AU  - V. A. Pavlov
TI  - Gas dynamic boundary conditions for evaporation processes
JO  - Matematičeskoe modelirovanie
PY  - 1998
SP  - 112
EP  - 122
VL  - 10
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1998_10_11_a9/
LA  - ru
ID  - MM_1998_10_11_a9
ER  - 
%0 Journal Article
%A D. B. Moskvin
%A V. A. Pavlov
%T Gas dynamic boundary conditions for evaporation processes
%J Matematičeskoe modelirovanie
%D 1998
%P 112-122
%V 10
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1998_10_11_a9/
%G ru
%F MM_1998_10_11_a9
D. B. Moskvin; V. A. Pavlov. Gas dynamic boundary conditions for evaporation processes. Matematičeskoe modelirovanie, Tome 10 (1998) no. 11, pp. 112-122. http://geodesic.mathdoc.fr/item/MM_1998_10_11_a9/