The analytical solution to the linear nonautonomous system of point reactor kinetics equations
Matematičeskoe modelirovanie, Tome 10 (1998) no. 11, pp. 101-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the analytical solution to the linear nonautonomous system of point reactor kinetics equations with one group of delayed neutrons and the reactivity described by any smooth function of time. To obtain the solution, an asymptotic series in a small parameter is constructed. Numerical results to show a fast convergence of the series are discussed. The case of the reactivity linearly dependent on time is considered. Using the quasistationary derivative method, the analytical solution is obtained in the form of an explicit time dependence expressed as a combination of elementary functions.
@article{MM_1998_10_11_a8,
     author = {D. M. Babanakov},
     title = {The analytical solution to the linear nonautonomous system of point reactor kinetics equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {101--111},
     publisher = {mathdoc},
     volume = {10},
     number = {11},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1998_10_11_a8/}
}
TY  - JOUR
AU  - D. M. Babanakov
TI  - The analytical solution to the linear nonautonomous system of point reactor kinetics equations
JO  - Matematičeskoe modelirovanie
PY  - 1998
SP  - 101
EP  - 111
VL  - 10
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1998_10_11_a8/
LA  - ru
ID  - MM_1998_10_11_a8
ER  - 
%0 Journal Article
%A D. M. Babanakov
%T The analytical solution to the linear nonautonomous system of point reactor kinetics equations
%J Matematičeskoe modelirovanie
%D 1998
%P 101-111
%V 10
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1998_10_11_a8/
%G ru
%F MM_1998_10_11_a8
D. M. Babanakov. The analytical solution to the linear nonautonomous system of point reactor kinetics equations. Matematičeskoe modelirovanie, Tome 10 (1998) no. 11, pp. 101-111. http://geodesic.mathdoc.fr/item/MM_1998_10_11_a8/